首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family Baetidae, which belongs to the order Ephemeroptera, was first described by Leach in 1815 . Since then, almost 100 genera and 900 species have been described. Although diverse, this family is relatively homogeneous. The adults are extremely similar to one another, the wings vary little and the penes are membranous, features that significantly reduce differentiation among taxa. In contrast, the larvae have more conspicuous differences. Most are collector–gatherers, but a few are carnivorous or filter feeders. In South America, although knowledge concerning the 27 genera and 132 species of Baetidae described for this region has improved in the last three decades, phylogenetic relationships remain unknown. The present study, the first cladistic analysis of Baetidae in South America, included 70 species (55 are Neotropical) and 126 morphological characters. The matrix was analysed using tnt , under implied weights. Although the monophyly of the family Baetidae was obtained with good support, the subfamilies proposed originally (Baetinae, Cloeoninae and Callibaetinae) were recovered as paraphyletic. The Baetodes complex, as well as the relationships between genera, is discussed. The validity of some structures or characters as support of different groupings is also discussed.  相似文献   

2.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

3.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

4.
Phylogenetic analyses of the leech family Macrobdellidae were accomplished with all nominal species in the family save one. A total of 17 specimens in nine ingroup species were analysed, along with four outgroup taxa. Twenty-two morphological characters based on jaw dentition, sexual anatomy, and external morphology failed to provide a resolution for many of the relationships in the family. DNA sequence data from nuclear 18S rDNA, nuclear 28S rDNA, mitochondrial 12S rDNA, and mitochondrial cytochrome c oxidase subunit I were examined separately and in combination with morphological characters. The resulting combined analysis strongly corroborated the placement of the genus Philobdella within the family Macrobdellidae and as sister to a monophyletic genus Macrobdella , the typical North American medicinal leeches. Furthermore, sequence divergences among these taxa confirmed the existence of two species, Philobdella gracilis and P. floridana , readily distinguishable on the basis of jaw dentition .  相似文献   

5.
6.
The Lejeuneaceae are the largest family of the liverworts (Hepaticae), with almost a thousand species in 91 currently accepted genera. We analysed phylogenetic relationships of 69 genera, representing all major subfamilies and tribes recognized in the family, by using 49 informative morphological characters (31 gametophytic, 18 sporophytic), one chemical character, and applying equal and successive weighting of characters and parsimony analysis. In all trees recovered, the Lejeuneaceae were monophyletic with Nipponolejeunea (subfam. Nipponolejeuneoideae) forming the basalmost lineage. The remaining genera clustered in two major groups, the monophyletic Lejeuneoideae (52 genera) and the paraphyletic Ptychanthoideae (16 genera). Within each, several multigeneric lineages corresponding in part to previously described taxa were recovered: the Acrolejeuneinae and Ptychanthinae clades in the Ptychanthoideae, and the Brachiolejeuneinae, Lejeuneeae and Tuyamaella–Cololejeunea clades in the Lejeuneoideae. Bryopteris , a genus sometimes treated as a separate family, was nested in the Ptychanthinae clade. The Tuyamaella–Cololejeunea lineage corresponded with three previously recognized subfamilies (Cololejeuneoideae, Myriocoleoideae and Tuyamaelloideae) and contained genera with neotenic features, in two subclades. These features seemed to have originated by multiple heterochronic events: single origins were detected for 'protonemal neoteny' and 'primary neoteny', whereas 'secondary neoteny' probably evolved twice. Relationships within the large Lejeuneeae clade (43 genera) remained largely unresolved, although several putative lineages were detected in majority rule trees. Additional characters such as DNA sequences may provide better phylogenetic resolution in this group.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 391–410.  相似文献   

7.
Phylogenetic studies addressing relationships among chrysidid wasps have been limited. There are no hypotheses proposed for the Neotropical lineages of Chrysidini other than the classic cladogram published in the 1990s by Kimsey and Bohart. Herein we present a cladistic analysis based on 64 morphological characters coded for 54 species of Chrysidini, 32 of them being Ipsiura and 22 representing Caenochrysis, Chrysis, Exochrysis, Gaullea, Neochrysis, and Pleurochrysis. The species of Ipsiura were recovered as monophyletic and as the sister clade of Neochrysis in all most parsimonious trees. We discuss the high plasticity of some morphological characters as evidenced by their high homoplasy in the phylogenetic results, and we clarify the main morphological changes inferred on the phylogenetic tree for this genus. The effects of the inferred homoplasy were evaluated under an implied weighting cladistic analysis, and from a probabilistic perspective with Bayesian inference. Those alternative strategies did not alter the general conclusions about the monophyly of Ipsiura or the generic relationships in Chrysidini (changes were noticed in the species‐level relationships within certain parts of Ipsiura, where low branch support was common across all approaches). Among the species groups proposed by Linsenmaier (1985), only the marginalis group was recovered as monophyletic. We also evaluated the convoluted biogeographic history of the group. The resulting historical reconstructions indicate a complicated scenario of diversification of these wasps in the Neotropics, and a close association with forested biomes is discussed.  相似文献   

8.
Phylogeny of Ephemeroptera (mayflies) based on molecular evidence   总被引:1,自引:0,他引:1  
This study represents the first molecular phylogeny for the Order Ephemeroptera. The analyses included 31 of the 37 families, representing approximately 24% of the genera. Fifteen families were supported as being monophyletic, five families were supported as nonmonophyletic, and 11 families were only represented by one species, and monophyly was not testable. The suborders Furcatergalia and Carapacea were supported as monophyletic while Setisura and Pisciforma were not supported as monophyletic. The superfamilies Ephemerelloidea and Caenoidea were supported as monophyletic while Baetoidea, Siphlonuroidea, Ephemeroidea, and Heptagenioidea were not. Baetidae was recovered as sister to the remaining clades. The mayfly gill to wing origin hypothesis was not supported nor refuted by these data. Mandibular tusks were supported as having at least one loss in Behningiidae and, together with the burrowing lifestyle, possibly two origins. The fishlike body form was supported as plesiomorphic for mayflies with multiple secondary losses. Topological sensitivity analysis was used as a tool to examine patterns concerning the stability of relationships across a parameter landscape, providing additional information that may not have been acquired otherwise.  相似文献   

9.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

10.
The family Asclepiadaceae (Dicotyledones) was created by Brown in 1810 by splitting in two the family Apocynaceae of Jussieu established in 1789. The morphological characters used to make this distinction were mainly palynological, such as presence of tetrads or pollinia and number and orientation of pollinia. Those characters, still used in higher taxonomic delimitation (families, subfamilies, and tribes), are here critically reexamined and compared to a molecular phylogeny obtained with one of the more variable plastid genes (matK) of 46 species in the order Gentianales. In this molecular phylogeny, Asclepiadaceae form a monophyletic group derived from within Apocynaceae. Each of the subfamilies of Asclepiadaceae is monophyletic and based on reliable palynological characters, but palynological characters are not useful to delimit tribes of the subfamily Asclepiadoideae. Based on the molecular data, these tribes have undergone parallelisms in several reproductive traits.  相似文献   

11.
The Teloschistaceae is a widespread family with considerable morphological and ecological heterogeneity across genera and species groups. In order to provide a comprehensive molecular phylogeny for this family, phylogenetic analyses were carried out on sequences from the nuclear ribosomal ITS region obtained from 114 individuals that represent virtually all main lineages of Teloschistaceae. Our study confirmed the polyphyly of Caloplaca, Fulgensia and Xanthoria, and revealed that Teloschistes is probably non-monophyletic. We also confirm here that species traditionally included in Caloplaca subgenus Gasparrinia do not form a monophyletic entity. Caloplaca aurantia, C. carphinea and C. saxicola s. str. groups were recovered as monophyletic. The subgenera Caloplaca and Pyrenodesmia were also polyphyletic. In the subgenus Caloplaca, the traditionally recognized C. cerina group was recovered as monophyletic. Because this study is based solely on ITS, to maximize taxon sampling, the inclusion of phylogenetic signal from ambiguously aligned regions in MP (recoded INAASE and arc characters) resulted in the most highly supported phylogenetic reconstruction, compared with Bayesian inference restricted to alignable sites.  相似文献   

12.
Phylogenetic relationships within the family Parmeliaceae (lichenized ascomycetes) with emphasis on the heterogeneous group of cetrarioid lichens are reconstructed. The results are based on cladistic analyses of DNA-sequences, morphological and chemical data. Almost all currently recognized cetrarioid genera were included in the analyses together with parmelioid and alectorioid members of the presumably monophyletic family Parmeliaceae. We tried to sample taxonomic diversity of the family as widely as possible. The ITS1-5.8S-ITS2 region of the rDNA and a partial β-tubulin gene from 126 samples representing 82 species were analysed. Cetrarioid lichens were identified as a monophyletic group, supported by both ITS and β-tubulin characters. This group was reanalysed using 47 morphological, anatomical and secondary chemistry characters combined with the DNA data matrix. ITS and β-tubulin sequences provide congruent information, and a clear correlation between DNA-data and conidial shape is observed. The current taxonomy of the cetrarioid lichens is discussed and compared with the phylogenetic trees obtained here. A comprehensive study of the phylogeography of some bipolar or subcosmopolitic species with representatives from both hemispheres was performed. Cetraria aculeata is the only taxon where correlation between DNA-data and geographic origin is observed.  相似文献   

13.
Phylogenetic relationships of the Malagasy and Australasian rainbowfishes are investigated using 4394 characters derived from five mitochondrial genes (12S, 16S, tRNA-Valine, ND5, and COI), three nuclear genes (28S, histone H3, and TMO-4c4), and 102 morphological transformations. This study represents the first phylogenetic analysis of the endemic Malagasy family Bedotiidae and includes a nearly complete taxonomic review of all nominal species, as well as numerous undescribed species. Simultaneous analysis of the molecular and morphological datasets results in two equally most parsimonious trees. Results indicate that Bedotiidae (Bedotia+Rheocles) and Bedotia are monophyletic, whereas Rheocles is paraphyletic with the inclusion of two recently described species from northeastern Madagascar, R. vatosoa, and R. derhami. Rheocles vatosoa and R. derhami are sister taxa, and this clade is recovered as the sister group to Bedotia. The remaining species of Rheocles are not sexually dimorphic and comprise a clade that is recovered as the sister group to Bedotia+(R. derhami+R. vatosoa), all of which are sexually dichromatic, and sexually dimorphic for pigmentation and fin development. Three geographically distinct clades are recovered within Bedotia, one comprising species with distributions ranging from mid- to southeastern Madagascar, another including species restricted to eastern drainages north of the Masoala Peninsula, and a third comprising taxa with distributions extending from the Masoala Peninsula south to the Ivoloina River. The Australian/New Guinean melanotaeniids are monophyletic and are recovered as the sister group to Bedotiidae. The Australasian Telmatherinidae and Pseudomugilidae comprise a clade that is recovered as the sister group to the Melanotaeniidae-Bedotiidae clade. This sister-group relationship between Malagasy bedotiids and a clade restricted to Australia-New Guinea, and the absence of a close relationship between bedotiids and African or Mascarene atheriniforms, is congruent with the break-up of Gondwana, not a scenario reliant on Cenozoic trans-oceanic dispersal. Finally, results of the phylogenetic analysis indicate that Atheriniformes is polyphyletic and further corroborate recent morphological hypotheses, which have recovered Bedotiidae in a derived position within Atherinoidei.  相似文献   

14.
15.
Several members of the dipteran family Tephritdae are serious pests because females lay eggs in ripening fruit. The genus Bactrocera is one of the largest within the family with over 500 described species arranged in 28 subgenera. The phylogenetic relationships among the various species and subgenera, and the monophyly of specific groups have not been examined using a rigorous phylogenetic analysis. Therefore, phylogenetic relationships among 24 Bactrocera species belonging to 9 subgenera were inferred from DNA sequence of portions of the mitochondrial 16S rRNA, cytochrome oxidase II, tRNA(Lys), and tRNA(Asp) genes. Two morphological characters that traditionally have been used to define the four groups within the subgenus Bactrocera were evaluated in a phylogenetic context by mapping the character states onto the parsimony tree. In addition, the evolutionary trend in male-lure response was evaluated in a phylogenetic context. Maximum parsimony analyses suggested the following relationships: (1) the genus Bactrocera is monophyletic, (2) the subgenus B. (Zeugodacus) is paraphyletic, (3) the subgenus B. (Daculus) is a sister group to subgenus B. (Bactrocera), and (4) the subgenus B. (Bactrocera) is monophyletic. The mapping analyses suggested that the morphological characters exhibit a simple evolutionary transition from one character state to another. Male-lure response was identified as being a labile behavior that has been lost on multiple occasions. Cue-lure response was plesiomorphic to methyl-eugenol response, and the latter has evolved independently within the Bactrocera and Zeugodacus groups of subgenera. The implications of our results for devising a coherent, consolidated classification for Bactrocera is discussed.  相似文献   

16.
A portion of mitochondrial 12S rDNA sequences (337-355 base pairs) and 63 morphological characters of 36 hard-tick species belonging to 7 genera were analyzed to determine the phylogenetic relationships among groups and species of Rhipicephalus and between the genera Rhipicephalus and Boophilus. Molecular and morphological data sets were first examined separately. The molecular data were analyzed by maximum parsimony (MP), maximum likelihood, and neighbor-joining distance methods; the morphological data were analyzed by MP After their level of congruence was evaluated by a partition homogeneity test, all characters were combined and analyzed by MP. The branches of the tree obtained by combining the data sets were better resolved than those of the trees inferred from the separate analyses. Boophilus is monophyletic and arose within Rhipicephalus. Boophilus species clustered with species of the Rhipicephalus evertsi group. Most of the clustering within Rhipicephalus was, however, consistent with previous classifications based on morphological data. Morphological characters were traced on the molecular reconstruction in order to identify characters diagnostic for monophyletic clades. Within the Rhipicephalus sanguineus complex, the sequences of specimens morphologically identified as Rhipicephalus turanicus were characterized by a high level of variability, indicating that R. turanicus-like morphology may cover a spectrum of distinct species.  相似文献   

17.
The morphological based taxonomy of highly derived parasite groups is likely to poorly reflect their evolutionary relationships. The taxonomy of the monogenean family Capsalidae, which comprises approximately 180 species of flatworm parasites that predominantly attach to external surfaces of chondrichthyan and teleost fishes, is based mainly on six morphological characters. The phylogenetic history of the family is largely unknown. We reconstructed the phylogenetic relationships of 47 species in 20 genera from eight of the nine subfamilies, from nucleotide sequences of three unlinked nuclear genes, 28S ribosomal RNA, Histone 3 and Elongation Factor 1 α. Our phylogeny was well corroborated, with 75% of branches receiving strong support from both Bayesian posterior probabilities and maximum likelihood bootstrap proportions and all nodes showed positive partitioned likelihood support for each of the three genes. We found that the family was monophyletic, with the Gyrodactylidae and Udonellidae forming the sister group. The Capsalinae was monophyletic, however, our data do not support monophyly for the Benedeniinae, Entobdellinae and Trochopodinae. Monophyly was supported for Capsala, Entobdella, Listrocephalos, Neobenedenia and Tristoma, but Benedenia and Neoentobdella were polyphyletic. Comparisons of the distribution of character states for the small number of morphological characters on the molecular phylogeny show a high frequency of apparent homoplasy. Consequently the current morphological classification shows little correspondence with the phylogenetic relationships within the family.  相似文献   

18.
Molecular analyses are transforming our understanding of the evolution of scleractinian corals and conflict with traditional classification, which is based on skeletal morphology. A new classification system, which integrates molecular and morphological data, is essential for documenting patterns of biodiversity and establishing priorities for marine conservation, as well as providing the morphological characters needed for linking present‐day corals with fossil species. The present monograph is the first in a series whose goal is to develop such an integrated system. It addresses the taxonomic relationships of 55 Recent zooxanthellate genera (one new) in seven families (one new), which were previously assigned to the suborder Faviina (eight genera are transferred to incertae sedis). The present monograph has two objectives. First, we introduce the higher‐level classification system for the 46 genera whose relationships are clear. Second, we formally revise the taxonomy of those corals belonging to the newly discovered family‐level clade (restricted today to the western Atlantic and Caribbean regions); this revised family Mussidae consists of ten genera (one of which is new) and 26 species that were previously assigned to the ‘traditional’ families Faviidae and Mussidae. To guide in discovering morphologic characters diagnostic of higher‐level taxa, we mapped a total of 38 morphologic characters [19 macromorphology, eight micromorphology, 11 microstructure] onto a molecular tree consisting of 67 species [22 Indo‐Pacific and seven Atlantic species in the traditional family Faviidae; 13 Indo‐Pacific and ten Atlantic species in the traditional family Mussidae; 13 species in the traditional families Merulinidae (5), Pectiniidae (7), and Trachyphylliidae (1); two Atlantic species of traditional Montastraea], and trace character histories using parsimony. To evaluate the overall effectiveness of morphological data in phylogeny reconstruction, we performed morphology‐based phylogenetic analyses using 27 (80 states) of the 38 characters, and compared morphological trees with molecular trees. The results of the ancestral state reconstructions revealed extensive homoplasy in almost all morphological characters. Family‐ and subfamily‐level molecular clades [previously identified as XVII?XXI] are best distinguished on the basis of the shapes of septal teeth and corresponding microstructure. The newly revised family Mussidae (XXI) has septal teeth with regular pointed tips (a symplesiomorphy) and a stout blocky appearance. It has two subfamilies, Mussinae and Faviinae. The subfamily Mussinae is distinguished by spine‐shaped teeth and widely spaced costoseptal clusters of calcification centres. The subfamily Faviinae is distinguished by blocky, pointed tricorne or paddle‐shaped teeth with elliptical bases, transverse structures such as carinae that cross the septal plane, and well‐developed aligned granules. Defining diagnostic characters for the broader data set is more challenging. In analyses of taxonomic subsets of the data set that were defined by clade, morphological phylogenetic analyses clearly distinguished the families Mussidae (XXI) and Lobophylliidae (XIX), as well as the two subfamilies of Mussidae (Mussinae, Faviinae), with one exception (Homophyllia australis). However, analyses of the entire 67‐species data set distinguished the family Lobophylliidae (XIX), but not the Merulinidae (XVII) and not the newly defined Mussidae (XXI), although the subfamily Mussinae was recovered as monophyletic. Some lower‐level relationships within the Merulinidae (XVII) agree with molecular results, but this particular family is especially problematic and requires additional molecular and morphological study. Future work including fossils will not only allow estimation of divergence times but also facilitate examination of the relationship between these divergences and changes in the environment and biogeography. Published 2012. This article is a U.S. Government work and is in the public domain in the USA. Zoological Journal of the Linnean Society, 2012, 166 , 465–529.  相似文献   

19.
The oestroid family Tachinidae represents one of the most diverse lineages of insect parasitoids. Despite their broad distribution, diversity and important role as biological control agents, the phylogeny of this family remains poorly known. Here, we review the history of tachinid systematics and present the first quantitative phylogenetic analysis of the family based on morphological data. Cladistic analyses were conducted using 135 morphological characters from 492 species belonging to 180 tachinid genera, including the four currently recognized subfamilies (Dexiinae, Exoristinae, Phasiinae, Tachininae) and all major tribes. We used characters of eggs, first‐instar larvae and adults of both sexes. We examined the effects of implied weighting by reanalysing the data with varying concavity factors. Our analysis generally supports the subfamily groupings Dexiinae + Phasiinae and Tachininae + Exoristinae, with only the Exoristinae and the Phasiinae reconstructed as monophyletic assemblages under a wide range of weighting schemes. Under these conditions, the Dexiinae, which were previously considered a well‐established monophyletic assemblage, are reconstructed as being paraphyletic with respect to the Phasiinae. The Tachininae are reconstructed as a paraphyletic grade from which the monophyletic Exoristinae arose. The Exoristinae are reconstructed as a monophyletic lineage, but phylogenetic relationships within the subfamily are largely unresolved. We further explored the evolution of oviposition strategy and found that the oviparous groups are nested within ovolarviparous assemblages, suggesting that ovipary may have evolved several times independently from ovolarviparous ancestors. This counterintuitive pattern is a novel hypothesis suggested by the results of this analysis. Finally, two major patterns emerge when considering host associations across our phylogeny under equal weights: (i) although more than 60% of tachinids are parasitoids of Lepidoptera larvae, none of the basal clades is unambiguously associated with Lepidoptera as a primitive condition, suggesting that tachinids were slow to colonize these hosts, but then radiated extensively on them; and (ii) there is general agreement between host use and monophyly of the major lineages.  相似文献   

20.
Phylogenenetic relationships of the superfamily Tephritoidea (Diptera: Tephritidae) were reanalysed based upon four mitochondrial gene fragments (12S, 16S, cytochrome c oxidase I and cytochrome c oxidase II) from 53 tephritoid (10 families) and 30 outgroup (14 families) species. The data set of Han and Ro (Mol Phylogenet Evol, 39, 2005, 416) was expanded in terms of the number of taxa as well as molecular characters. We were able to sample the enigmatic families Ctenostylidae and Eurygnathomyiidae for the first time. Based on increased taxon sampling (from 49 to 83 species) and additional sequences (combined length of DNA fragments increased from 2451 to 4490 bp), the inferred phylogenetic trees suggest a number of interesting phylogenetic relationships, some of which were not recovered from the previous study. Some of the important findings are as follows: (1) monophyly of the superfamily Tephritoidea; (2) all the included tephritoid families except for Tephritidae were recovered as monophyletic groups; (3) Tephritoidea can be divided into two monophyletic groups – the Piophilidae Family Group (Pallopteridae, Circumphallidae?, Lonchaeidae, Piophilidae and Eurygnathomyiidae) and the Tephritidae Family Group (Richardiidae, Ulidiidae, Platystomatidae, Tephritidae, Ctenostylidae and Pyrgotidae); (4) Eurygnathomyiidae is recognized as an independent monophyletic family apart from Pallopteridae; (5) the enigmatic family Ctenostylidae is a member of the superfamily Tephritoidea; (6) parasitic Pyrgotidae + Ctenostylidae + Tachiniscinae and mostly phytophagous Tephritidae are recovered within a monophyletic group; and (7) according to an inferred chronogram, the first Tephritoidea might have evolved around the middle of Paleocene Epoch [~59 Million years ago (mya)] and the family Tephritidae around the late Eocene (~36 mya).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号