首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract 1 The herbivorous bug Heteropsylla cubana Crawford (Homoptera: Psyllidae) is a pest of the cattle fodder crop Leucaena (Leguminosae: Mimosoideae). The interaction between the psyllid and three varieties of its Leucaena host plant was investigated in relation to the apparent resistance of some Leucaena varieties (Leucaena leucocephala, Leucaena pallida and their hybrids) to attack. 2 Field trials demonstrated that adult psyllids distinguished among the different varieties of Leucaena over a distance, and were attracted to L. leucocephala in significantly higher numbers than to L. pallida or to the hybrid. Pesticide treatment increased the attractiveness of Leucaena plants, even of those deemed to be psyllid resistant. Numbers of psyllid eggs and nymphs, sampled in the field, reflect the arrival rates of adults at the three plant varieties. 3 Wavelength reflectance data of the three Leucaena varieties were not significantly different from one another, suggesting that psyllids cannot discriminate among the three plants using brightness or wavelength cues. There was a differential release of caryophyllene among the three varieties. Release of caryophyllene in L. leucocephala and the hybrid appeared to be influenced by environmental conditions. 4 Experiments demonstrated that caryophyllene (at least on its own) did not influence the behaviour of leucaena psyllids in relation to leucaena plants. 5 The results suggest that host plant volatiles cannot be dismissed as significant in the interaction between the leucaena psyllid and its Leucaena host plants. Further avenues for investigation are recommended and these are related to novel ways of understanding resistance in insect plant inter‐relationships.  相似文献   

2.
The consequences of the introduction of invasive plants for the diet of herbivorous insects have been little explored in nature where, potentially, abiotic and biotic factors operate. In this study, we examined the larval performance of two Neotropical Danaini butterflies when using either a native or an exotic Apocynaceae species as host plant in both field and laboratory experiments. Hosts greatly differ in their amount of latex exudation and other physicochemical traits, as well as in the amount of evolutionary time they have interacted with herbivores. First, herbivore performance on the hosts was investigated under laboratory conditions. Larvae of both Danaini species took more time to develop on the exotic host; larval survivorship did not vary between hosts. Second, first instar survivorship on both hosts was evaluated in two field sites, one site per host. To do so, in both sites half of the larvae were bagged (protected against both abiotic and biotic factors) while the remainder were nonbagged (exposed). The interaction between larval exposure with the use of the exotic host reduced larval survival. We concluded that the combined effects of host plant traits and abiotic factors reduced survival of herbivores in field conditions. Therefore, the performance of herbivores when using hosts of different origins should be considered together with the multiple ecological factors found in natural environments, as these factors can modify the result of plant–herbivore interactions.  相似文献   

3.
4.
【目的】烟粉虱Bemisia tabaci(Gennadius)体内次生共生菌感染受寄主植物的影响,一些共生菌会引起害虫的雌性化,明确田间不同寄主植物上害虫种群中共生菌与性比的相关性,可有利于进一步了解烟粉虱田间种群暴发机制。【方法】采集田间不同寄主植物上烟粉虱成虫,观察其性比,并对其中次生共生菌进行分子检测,分析共生菌携带率与性比相关性。【结果】江苏南京地区棉花、番茄、黄瓜和红薯4种寄主植物上烟粉虱次生共生菌Hamiltonella和Rickettsia感染均存在显著差异,其中Hamiltonella为优势共生菌,感染率依次为:棉花>黄瓜>番茄>红薯。寄主植物间Wolbachia和Cardinium的感染率均无显著差异。各寄主植物上烟粉虱雌性比均高于60%,其中黄瓜上高达75.6%,但不同寄主植物间无显著差异。进一步分析表明,Hamiltonella和Rickettsia感染率均与烟粉虱雌性比呈显著的二次多项式相关性。当Hamiltonella和Rickettsia感染率分别低于69%和5%时,随着感染率提高,烟粉虱雌性比上升,当感染率高于上述值时,则随着感染率增加,雌性比下降。【结论】棉花、番茄、黄瓜和红薯4种寄主植物上烟粉虱均表现出雌性化,但不同寄主植物间性比无差异,烟粉虱体内次生共生菌与性比存在相关性。  相似文献   

5.
植物与草食动物之间的协同适应及进化   总被引:8,自引:2,他引:8  
王德利 《生态学报》2004,24(11):2641-2648
通常协同进化是指一个物种 (或种群 )的遗传结构由于回应于另一个物种 (或种群 )遗传结构的变化而发生的相应改变。广义的理解 ,协同进化是相互作用的物种之间的互惠进化。生物之间、特别是植物与草食动物之间的协同适应与进化 ,已经成为生物进化、生态、遗传等学科十分关注的问题 ,可能成为生物学中各学科研究的交汇点或结点。作者具体阐述了 :(1)生物之间协同进化的研究意义 ,包括对生物学与生态学的价值 ;(2 )生物之间协同进化研究的限制或困难 ,诸如时间、研究对象、进化等级尺度和研究方法的限制 ;(3)植物与草食动物之间协同进化的主要研究对象 (系统 ) ,即昆虫传粉系统、昆虫诱导植物反应系统、种子散布系统、以及大型草食动物采食与植物反应系统 ;(4 )植物与草食动物之间协同进化的主要研究内容 ,包括适应特征 (性状 )——物种的可塑性 ,以及适应机制——物种适应过程与策略两个方面 ;(5 )植物与草食动物之间协同进化研究的存在问题及研究方向  相似文献   

6.
Plants employ various defensive tactics against herbivores but are rarely considered to use rapid movements to resist predation. However, the aboveground parts of plants are often forcefully moved by wind and rain. This passive movement has been overlooked as an anti‐herbivore trait. The leaves of many plant species, such as aspens, Indian sacred fig, bamboos, and palms, tremble even in a slight breeze. Leaves that are easily moved by gentle winds can sometimes resist strong winds and may have other benefits as well. In the present study, it is proposed that the movement of such plant leaves physically deters arthropod herbivory and pathogen infection by repelling colonization and oviposition by herbivorous insects. This leads to herbivores and pathogens being dislodged from the plants, and the ensuing death of the herbivores on the ground or at least their recolonization to other plants, as well as the interruption of feeding, intraspecific communication and the mating behaviour of herbivores, thus lowering their performance on the plant or increasing enemy attack of the herbivores. In addition, passive leaf movements may undermine herbivore camouflage and expose them to predation, and may also allow plant volatiles to diffuse efficiently to repel herbivores and attract natural enemies. Thus, the mechanistic properties of these leaves may have anti‐herbivore effects in the wind and rain. This hypothesis can also be applied to aquatic plants that tremble in gentle water currents. In addition, genetic manipulation of the tendency for leaf movement may be beneficial for the management of pest insects and pathogens with reduced pesticides in forestry and agriculture. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 738–747.  相似文献   

7.
Several dioecious plant species exhibit sexual dimorphisms in defensive traits. However, the effects of sexual dimorphism on defense against herbivores remain poorly understood. Eurya japonica (Thunb.) (Theaceae) is a dioecious shrub that shows sexual dimorphism in the chemical defense of flower buds. Female calyces contain higher concentrations of total phenolics and condensed tannins than do male calyces. Male flower buds are edible for a florivore moth, Chloroclystis excisa (Butler) (Lepidoptera: Geometridae), whereas the female flower buds are lethal to the moth larvae. The moths prefer to oviposit on male over female E. japonica flower buds. As the moths also occur in areas lacking E. japonica, we tested whether the oviposition preference for E. japonica flower sex differed between moths sympatric and allopatric with E. japonica. The moths sympatric with E. japonica showed a stronger preference for male E. japonica than the moths allopatric with E. japonica. Our phylogeographic study using mitochondrial cytochrome oxidase subunit I gene sequences revealed little genetic differentiation between moth populations sympatric and allopatric with E. japonica. These results suggest that the adaptive oviposition preference for flower sex of E. japonica has evolved rapidly in C. excisa.  相似文献   

8.
9.
Soil amelioration by a wood-ant species and its consequences for the larval performance of autumnal moths feeding on mountain birch were studied at various distances from the nest mound. Soil nitrate and ammonium nitrogen did not show any clear relationship with distance. However, trees growing in the mound had over 20% more foliar nitrogen than more distant trees. When moth larvae were experimentally protected from predation, their survival rate and final weight tended to decrease with increasing distance. In a laboratory experiment with detached leaves, the relative growth rate of larvae was roughly 30% higher on leaves from trees located on the mound. Differences in larval performance refute the Plant Stress Hypothesis proposed by T.C.R. White and support P.W. Price's Plant Vigor Hypothesis. Predation by ants was examined along the same gradient in trees with and without a glue band that excluded ants from the canopy. Reduction in the daily survival rate of larvae attributable to ant predation was about 35% in trees growing in the mound and around 5% at a distance of 20 m. Other things being equal, about 25 times more larvae entering the penultimate instar would achieve the pupal stage outside the wood-ant territory than in the vicinity of the mound. While both the fertilizing and predatory influence of wood ants is clear, the domain of predation is much larger than the area where trees and their herbivores can exploit enhanced nutrient levels in and around ant mounds. The existence of undamaged green islands around ant mounds in otherwise totally defoliated mountain-birch forests cannot be explained by soil amelioration by wood ants but rather by their predatory activity. Received: 21 November 1996 / Accepted: 8 September 1997  相似文献   

10.
Double infections of related or unrelated viruses frequently occur in single plants, the viral agents being inoculated into the host plant simultaneously (co‐infection) or sequentially (super‐infection). Plants attacked by viruses activate sophisticated defence pathways which operate at different levels, often at significant fitness costs, resulting in yield reduction in crop plants. The occurrence and severity of the negative effects depend on the type of within‐host interaction between the infecting viruses. Unrelated viruses generally interact with each other in a synergistic manner, whereas interactions between related viruses are mostly antagonistic. These can incur substantial fitness costs to one or both of the competitors. A relatively well‐known antagonistic interaction is cross‐protection, also referred to as super‐infection exclusion. This type of interaction occurs when a previous infection with one virus prevents or interferes with subsequent infection by a homologous second virus. The current knowledge on why and how one virus variant excludes or restricts another is scant. Super‐infection exclusion between viruses has predominantly been attributed to the induction of RNA silencing, which is a major antiviral defence mechanism in plants. There are, however, presumptions that various mechanisms are involved in this phenomenon. This review outlines the current state of knowledge concerning the molecular mechanisms behind antagonistic interactions between plant viruses. Harmful or beneficial effects of these interactions on viral and host plant fitness are also characterized. Moreover, the review briefly outlines the past and present attempts to utilize antagonistic interactions among viruses to protect crop plants against destructive diseases.  相似文献   

11.
1. Predatory ants may reduce infestation by herbivorous insects, and slow‐moving Lepidopteran larvae are often vulnerable on foliage. We investigate whether caterpillars with morphological or behavioural defences have decreased risk of falling prey to ants, and if defence traits mediate host plant use in ant‐rich cerrado savanna. 2. Caterpillars were surveyed in four cerrado localities in southeast Brazil (70–460 km apart). The efficacy of caterpillar defensive traits against predation by two common ant species (Camponotus crassus, C. renggeri) was assessed through experimental trials using caterpillars of different species and captive ant colonies. 3. Although ant presence can reduce caterpillar infestation, the ants' predatory effects depend on caterpillar defence traits. Shelter construction and morphological defences can prevent ant attacks (primary defence), but once exposed or discovered by ants, caterpillars rely on their size and/or behaviour to survive (secondary defence). 4. Defence efficiency depends on ant identity: C. renggeri was more aggressive and lethal to caterpillars than C. crassus. Caterpillars without morphological defences or inside open shelters were found on plants with decreased ant numbers. No unsheltered caterpillar was found on plants with extrafloral nectaries (EFNs). Caterpillars using EFN‐bearing plants lived in closed shelters or presented morphological defences (hairs, spines), and were less frequently attacked by ants during trials. 5. The efficiency of defences against ants is thus crucial for caterpillar survival and determines host plant use by lepidopterans in cerrado. Our study highlights the effect of EFN‐mediated ant‐plant interactions on host plant use by insect herbivores, emphasizing the importance of a tritrophic viewpoint in risky environments.  相似文献   

12.
13.
14.
Feather mites are obligatory ectosymbionts of birds that primarily feed on the oily secretions from the uropygial gland. Feather mite abundance varies within and among host species and has various effects on host condition and fitness, but there is little consensus on factors that drive variation of this symbiotic system. We tested hypotheses regarding how within‐species and among‐species traits explain variation in both (1) mite abundance and (2) relationships between mite abundance and host body condition and components of host fitness (reproductive performance and apparent annual survival). We focused on two closely related (Parulidae), but ecologically distinct, species: Setophaga cerulea (Cerulean Warbler), a canopy dwelling open‐cup nester, and Protonotaria citrea (Prothonotary Warbler), an understory dwelling, cavity nester. We predicted that feather mites would be more abundant on and have a more parasitic relationship with P. citrea, and within P. citrea, females and older individuals would harbor greater mite abundances. We captured, took body measurements, quantified feather mite abundance on individuals’ primaries and rectrices, and monitored individuals and their nests to estimate fitness. Feather mite abundance differed by species, but in the opposite direction of our prediction. There was no relationship between mite abundance and any measure of body condition or fitness for either species or sex (also contrary to our predictions). Our results suggest that species biology and ecological context may influence mite abundance on hosts. However, this pattern does not extend to differential effects of mites on measures of host body condition or fitness.  相似文献   

15.
1. The bottom‐up factors that determine parasitoid host use are an important area of research in insect ecology. Host size is likely to be a primary cue for foraging parasitoids due to its potential influence on offspring development time, the risk of multiparasitism, and host immunocompetence. Host size is mediated in part by host‐plant traits that influence herbivore growth and potentially affect a herbivore's quality as a host for parasitoids. 2. Here, we tested how caterpillar host size and host plant species influence adult fly parasitoid size and whether host size influences wasp parasitoid sex allocation. We measured the hind tibia lengths and determined the sex of wasp and fly parasitoids reared from 11 common host species of polyphagous caterpillars (Limacodidae) that were in turn reared on foliage of seven different host plant species. 3. We also tested how host caterpillar species, host caterpillar size, and host and parasitoid phenology affect how the parasitoid community partitions host resources. We found evidence that parasitoids primarily partition their shared hosts based on size, but not by host species or phenology. One index of specialisation (d′) supports our observation that these parasitoids are quite generalised within the Limacodidae. In general, wasps were reared from caterpillars collected in early instars, while flies were reared from caterpillars collected in late instars. Furthermore, for at least one species of solitary wasp, host size influenced sex allocation of offspring by ovipositing females. 4. Host‐plant quality indirectly affected the size attained by a tachinid fly parasitoid through its direct effects on the size and performance of the caterpillar host. The host plants that resulted in the highest caterpillar host performance in the absence of enemies also yielded the largest parasitoid flies, which suggests that host plant quality can cascade up to influence the third trophic level.  相似文献   

16.
Trichomes are an important physical resistance mechanism of plants, as they reduce insect herbivore movement, feeding, and digestion. However, we know little about how trichomes influence herbivore distributions and populations. We conducted laboratory and field experiments to evaluate the preferences of Platyprepia virginalis (Boisduval) (Lepidoptera: Arctiidae) caterpillars to natural and manipulated densities of trichomes on their primary food, Lupinus arboreus Sims (Fabaceae). We then conducted field surveys to determine whether variation in trichome density among lupine bushes affected caterpillar spatial distribution on the landscape. Platyprepia virginalis caterpillars preferred lupine leaves with fewer trichomes in choice and no‐choice experiments. In the field, caterpillar feeding damage was found more often on leaves with fewer trichomes. These preferences scaled up to the level of bushes in the landscape such that more caterpillars were found on bushes with lower trichome densities than on bushes with higher trichome densities. This is one of few studies to show the potential for trichome density to influence herbivore population size and distribution in a natural system at a landscape level. The results are consistent with trichomes functioning as a resistance mechanism with consequences for herbivore choice, performance, and distribution.  相似文献   

17.
Cotton plants contain suites of phytochemicals thought to be important in defense against herbivores, some of which are localized in pigment glands which contain gossypol and other terpenoid aldehydes. The simple genetic basis for the expression of these glands has led to the development of near-isogenic glanded and glandless genotypes. Glands may also be phenotypically induced by herbivory. We determined the consequences of constitutive and induced gland expression on two types of herbivores, spider mites (cell content feeders) and noctuid caterpillars (leaf chewers).Induction of glands was strongly dependent on the density of attackers. Spider mite herbivory on cotyledons (1) increased the density (but not total number) of glands on cotyledons linearly, (2) increased the density and total number of glands on the first true leaf linearly, and (3) affected the density and total number of glands on the second true leaf non-linearly, compared to controls. Neither constitutive nor induced expression of glands affected mite population growth. An equal reduction of mite population size on induced glanded and glandless plants (50%) relative to uninduced controls indicated that factors other than glands were associated with induced resistance to mites. Constitutive gland expression had a strong negative impact on caterpillar performance, reducing growth by 45%. Induced resistance to caterpillars was three times stronger in glanded genotypes than in glandless genotypes, indicating that factors associated with induced resistance to caterpillars are strongly associated with glands. Three cotton varieties were highly variable in their constitutive and induced resistance to mites and caterpillars.Thus, defense of cotton plants against herbivores can be roughly categorized as constitutive and inducible factors associated with terpenoid aldehyde containing pigment glands that are effective against caterpillars, and factors not associated with glands that are effective against mites.  相似文献   

18.
Abstract.  1. In ecological speciation , adaptation to variation in the external environment provides the crucial push that starts the process of genetic divergence and eventually leads to speciation. This emphasis on the role of ecological specialisation in speciation events has brought with it a renewed interest in its proximate mechanisms in recently diverged groups such as host races. Here, the proximate mechanisms of feeding specialisation are investigated in two host races of the pea aphid Acyrthosiphon pisum .
2. Using alfalfa and clover extracts, enclosed in diet chambers or applied on whole plants, it is shown that feeding specialisation depends on recognition of stimulants specific to the host plant, not on deterrents or toxins specific to the non-host plants.
3. Because pea aphids mate on their host plant, feeding specialisation leads to de facto assortative mating. This study suggests that behavioural recognition of host-specific chemicals, rather than avoidance of deterrents or/and plant toxins, contributes to gene flow restriction between the alfalfa and clover host races.  相似文献   

19.
Trophobiont butterfly larvae offer caloric rewards to ants through specialised glands and, in return, gain ant‐derived protection from natural enemies. Thus, from the larva's perspective, the major cost of myrmecophily comprises the reward production. Larvae of the butterfly Parrhasius polibetes (Stoll) (Lycaenidae) are facultatively tended by several ant species, which might differ in the intensity of tending behaviour. The performance costs (development time, survival, pupal mass and adult dry mass) of P. polibetes are examined when tended by two ant species differing in size and foraging strategies (Camponotus melanoticus Emery and Camponotus crassus Mayr), along with the corresponding intensity of tending behaviour towards late instars. Untended larvae serve as controls. Larvae tended by C. melanoticus take longer to pupate compared with both C. crassus and control larvae. By contrast, pupae whose larvae are tended by C. crassus are lighter than control larvae but do not differ from those tended by C. melanoticus. No differences are found in the adult stage, indicating compensation in all cases. Both at short‐ and long‐term scales, C. melanoticus tends larvae of P. polibetes more intensely than C. crassus. The increase in tending activity of C. melanoticus presumably delays the development time of larvae tended by this ant species. The results of the present study show that tending intensity varies depending on the ant species, and that P. polibetes has compensatory mechanisms to minimise myrmecophily costs, regardless of tending intensity. To the authors' knowledge, this is the first experimental evidence that intensity of ant‐tending behaviour is species‐specific and affects performance in a trophobiont insect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号