首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Surface functionalization of nanoparticles has become an important tool for in vivo delivery of bioactive agents to their target sites. Here we describe the reverse strategy, nanoharvesting, in which nanoparticles are used as a tool to isolate bioactive compounds from living cells. Anatase TiO2 nanoparticles smaller than 20 nm form strong bonds with molecules bearing enediol and especially catechol groups. We show that these nanoparticles enter plant cells, conjugate enediol and catechol group‐rich flavonoids in situ, and exit plant cells as flavonoid‐nanoparticle conjugates. The source plant tissues remain viable after treatment. As predicted by the surface chemistry of anatase TiO2 nanoparticles, quercetin‐based flavonoids were enriched amongst the nanoharvested flavonoid species. Nanoharvesting eliminates the use of organic solvents, allows spectral identification of the isolated compounds, and opens new avenues for use of nanomaterials for coupled isolation and testing of bioactive properties of plant‐synthesized compounds.  相似文献   

2.
Moczyd?owska, M., Schopf, J.W. & Willman, S. 2009: Micro‐ and nano‐scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia, Vol. 43, pp. 129–136. Recently established protocols and methods in advanced microscopy and spectrometry applied to studies of ancient unicellular organic‐walled microfossils of uncertain biological affinities (acritarchs) provide new evidence of the fine ultrastructure of cell walls and their biochemistry that support the interpretation of some such microfossils as photosynthesizing microalgae. The micro‐scale and nanoscale ultrastructure of the cell walls of late Cryogenian sphaeromorphic acritarchs from the Chichkan Formation (Kazakhstan) revealed by the advanced techniques and studied originally by Kempe et al. (2005) is here further analysed and compared with that of modern microalgal analogues. On the basis of such comparison, we interpret the preserved cell wall ultrastructure to reflect original layering and lamination within sub‐layers of the fossil wall, rather than being a result of taphonomic and diagenetic alteration. The outer thick layer represents the primary wall and the inner layer the secondary wall of the cell, whereas the laminated amorphous sub‐layers, 10–20 nm in thickness and revealed by transmission electron and atomic force microscopy, are recognized as trilaminar sheath structure. Because two‐layered cell walls, trilaminar sheaths and the position of the TLS within the fossil cell wall are characteristic of the mature developmental state in cyst morphogenesis in modern microalgae, we infer that the Chichkan sphaeromorphs are probably resting cells (aplanospores) of chlorophyceaen green microalgae from the order Volvocales. □Biological affinity, cell wall, Cryogenian, microfossils, ultrastructure.  相似文献   

3.
Optimizing the interfacial contacts between the photoactive layer and the electrodes is an important factor in determining the performance of organic solar cells (OSCs). A charge‐selective layer with tailored electrical properties enhances the charge collection efficiency and interfacial stability. Here, the potential of hydrogenated TiO2 nanoparticles (H‐TiO2 NPs) as an efficient electron‐selective layer (ESL) material in OSCs is reported for the first time. The H‐TiO2 is synthesized by discharge plasma in liquid at atmospheric pressure, which has the benefits of a simple one‐pot synthesis process, rapid and mild reaction conditions, and the capacity for mass production. The H‐TiO2 exhibits high conductivity and favorable energy level formation for efficient electron extraction, providing a basis for an efficient bilayer ESL system composed of conjugated polyelectrolyte/H‐TiO2. Thus, the enhanced charge transport and extraction efficiency with reduced recombination losses at the cathode interfacial contacts is achieved. Moreover, the OSCs composed of H‐TiO2 are almost free of light soaking, which has been reported to severely limit the performance and stability of OSCs based on conventional TiO2 ESLs. Therefore, H‐TiO2 as a new efficient, stable, and cost‐effective ESL material has the potential to open new opportunities for optoelectronic devices.  相似文献   

4.
Eighteen microfossil morphotypes from two distinct facies of black chert from a deep‐water setting of the c. 2.4 Ga Turee Creek Group, Western Australia, are reported here. A primarily in situ, deep‐water benthic community preserved in nodular black chert occurs as a tangled network of a variety of long filamentous microfossils, unicells of one size distribution and fine filamentous rosettes, together with relatively large spherical aggregates of cells interpreted as in‐fallen, likely planktonic, forms. Bedded black cherts, in contrast, preserve microfossils primarily within, but also between, rounded clasts of organic material that are coated by thin, convoluted carbonaceous films interpreted as preserved extracellular polymeric substance (EPS). Microfossils preserved within the clasts include a wide range of unicells, both much smaller and larger than those in the nodular black chert, along with relatively short, often degraded filaments, four types of star‐shaped rosettes and umbrella‐like rosettes. Large, complexly branching filamentous microfossils are found between the clasts. The grainstone clasts in the bedded black chert are interpreted as transported from shallower water, and the contained microfossils thus likely represent a phototrophic community. Combined, the two black chert facies provide a snapshot of a microbial ecosystem spanning shallow to deeper‐water environments, and an insight into the diversity of life present during the rise in atmospheric oxygen. The preserved microfossils include two new, distinct morphologies previously unknown from the geological record, as well as a number of microfossils from the bedded black chert that are morphologically similar to—but 400–500 Ma older than—type specimens from the c. 1.88 Ga Gunflint Iron Formation. Thus, the Turee Creek Group microfossil assemblage creates a substantial reference point in the sparse fossil record of the earliest Paleoproterozoic and demonstrates that microbial life diversified quite rapidly after the end of the Archean.  相似文献   

5.
A new form of TiO2 microspheres comprised of anatase/TiO2‐B ultrathin composite nanosheets has been synthesized successfully and used as Li‐ion storage electrode material. By comparison between samples obtained with different annealing temperatures, it is demonstrated that the anatase/TiO2‐B coherent interfaces may contribute additional lithium storage venues due to a favorable charge separation at the boundary between the two phases. The as‐prepared hierarchical nanostructures show capacities of 180 and 110 mAh g?1 after 1000 cycles at current densities of 3400 and 8500 mA g?1. The ultrathin nanosheet structure which provides short lithium diffusion length and high electrode/electrolyte contact area also accounts for the high capacity and long‐cycle stability.  相似文献   

6.
Inverted organic solar cells generally exhibit a strong s‐shaped kink in the current–voltage characteristics (JV curve) that may be removed by exposure to UV light (light‐soaking) leading to a drastically improved performance. Using in‐device characterization methods the origin of the light‐soaking issue in inverted solar cells employing titanium dioxide (TiO2) as an electron selective layer is clarified. An injected hole reservoir accumulated at the TiO2/organic interface of the pristine device is observed from extraction current transients; the hole reservoir increases the recombination and results in an s‐shape in the JV curve of pristine devices. The hole reservoir and the s‐shape is a result of the energetics at the selective contact in the pristine device; the effect of UV exposure is to decrease the work function of the indium tin oxide/TiO2‐contact, increasing the built‐in potential. This hinders the build‐up of the hole reservoir and the s‐shape is removed. The proposed model is in excellent agreement with drift‐diffusion simulations.  相似文献   

7.
The reflection of picosecond ultrasonic pulses from a cell‐substrate interface is used to probe cell‐biomaterial adhesion with a subcell resolution. We culture monocytes on top of a thin biocompatible Ti metal film, supported by a transparent sapphire substrate. Low‐energy femtosecond pump laser pulses are focused at the bottom of the Ti film to a micron spot. The subsequent ultrafast thermal expansion launches a longitudinal acoustic pulse in Ti, with a broad spectrum extending up to 100 GHz. We measure the acoustic echoes reflected from the Ti‐cell interface through the transient optical reflectance changes. The time‐frequency analysis of the reflected acoustic pulses gives access to a map of the cell acoustic impedance Zc and to a map of the film‐cell interfacial stiffness K simultaneously. Variations in Zc across the cell are attributed to rigidity and density fluctuations within the cell, whereas variations in K are related to interfacial intermolecular forces and to the nano‐architecture of the transmembrane bonds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A common phenomenon of organic solar cells (OSCs) incorporating metal‐oxide electron extraction layers is the requirement to expose the devices to UV light in order to improve device characteristics – known as the so‐called “light‐soaking” issue. This behaviour appears to be of general validity for various metal‐oxide layers, various organic donor/acceptor systems, and regardless if single junction devices or multi stacked cells are considered. The requirement of UV exposure of OSCs may impose severe problems if substrates with limited UV transmission, UV blocking filters or UV to VIS down‐conversion concepts are applied. In this paper, we will demonstrate that this issue can be overcome by the use of Al doped ZnO (AZO) as electron extraction interlayer. In contrast to devices based on TiOx and ZnO, the AZO devices show well‐behaved solar cell characteristics with a high fill factor (FF) and power conversion efficiency (PCE) even without the UV spectral components of the AM1.5 solar spectrum. As opposed to previous claims, our results indicate that the origin of s‐shaped characteristics of the OSCs is the metal‐oxide/organic interface. The electronic structures of the TiOx/fullerene and AZO/fullerene interfaces are studied by photoelectron spectroscopy, revealing an electron extraction barrier for the TiOx/fullerene case and facilitated electron extraction for AZO/fullerene. These results are of general relevance for organic solar cells based on various donor acceptor active systems.  相似文献   

9.
In this work, a new strategy to design low‐temperature (≤200 °C) sintered dye‐sensitized solar cells (lt‐DSSC) is reported to enhance charge collection efficiencies (ηcoll), photoconversion efficiencies (η), and stabilities under continuous operation conditions. Realization of lt‐DSSC is enabled by the integration of hybrid nanoparticles based on TiO2‐Ru(II) complex (TiO2_Ru_IS)—obtained by in situ bottom‐up construction of Ru(II) N3 dye‐sensitized titania—into the photoelectrode. Incentives for the use of TiO2_Ru_IS are i) dye stability due to its integration into the TiO2 anatase network and ii) enhanced charge collection yield due to its significant resistance toward electron recombination with electrolytes. It is demonstrated that devices with single‐layer photoelectrodes featuring blends of P25 and TiO2_Ru_IS give rise to a 60% ηcoll relative to a 46% ηcoll for devices with P25‐based photoelectrodes. Responsible for this trend is a better charge transport and a reduced electron recombination. When using a multilayered photoelectrode architecture with a top layer based only on TiO2_Ru_IS, devices with an even higher ηcoll (74%) featuring a η of around 8.75% and stabilities of 600 h are achieved. This represents the highest values reported for lt‐DSSC to date.  相似文献   

10.
A novel ligand‐assisted assembly approach is demonstrated for the synthesis of thermally stable and large‐pore ordered mesoporous titanium dioxide with a highly crystalline framework by using diblock copolymer poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) as a template and titanium isopropoxide (TIPO) as a precursor. Small‐angle X‐ray scattering, X‐ray diffraction (XRD), transmission electron microscopy (TEM), high‐resolution scanning electron microscopy, and N2‐sorption measurements indicate that the obtained TiO2 materials possess an ordered primary cubic mesostructure with large, uniform pore diameters of about 16.0 nm, and high Brunauer–Emmett–Teller surface areas of ~112 m2 g?1, as well as high thermal stability (~700 °C). High resolution TEM and wide‐angle XRD measurements clearly illustrate the high crystallinity of the mesoporous titania with an anatase structure in the pore walls. It is worth mentioning that, in this process, in addition to tetrahydrofuran as a solvent, acetylacetone was employed as a coordination agent to avoid rapid hydrolysis of the titanium precursor. Additionally, stepped evaporation and heating processes were adopted to control the condensation rate and facilitate the assembly of the ordered mesostructure, and ensure the formation of fully polycrystalline anatase titania frameworks without collapse of the mesostructure. By employing the obtained mesoporous and crystallized TiO2 as the photoanode in a dye‐sensitized solar cell, a high power‐conversion efficiency (5.45%) can be achieved in combination with the N719 dye, which shows that this mesoprous titania is a great potential candidate as a catalyst support for photonic‐conversion applications.  相似文献   

11.
A 3D transparent conducting oxide (3D‐TCO) has been fabricated by growing Sn‐doped indium oxide (ITO) nanowire arrays on glass substrates via a vapor transport method. The 3D TCO charge‐collection properties have been compared to those of conventional two‐dimensional TCO (2D‐TCO) thin films. For use as a photoelectrode in dye‐sensitized solar cells, ITO‐TiO2 core‐shell nanowire arrays were prepared by depositing a 45 nm‐thick mesoporous TiO2 shell layer consisting of ~6 nm anatase nanoparticles using TiCl4 treatments. Dye‐sensitized solar cells fabricated using these ITO‐TiO2 core‐shell nanowire arrays show extremely fast charge collection owing to the shorter electron paths across the 45 nm‐thick TiO2 shell compared to the 2D TCO. Interestingly, the charge‐collection time does not increase with the overall electrode thickness, which is counterintuitive to conventional diffusion models. This result implies that, in principle, maximum light harvesting can be achieved without hindering the charge collection. The proposed new 3D TCO should also be attractive for other photovoltaic applications where the active layer thickness is limited by poor charge collection.  相似文献   

12.
Compact TiO2 is widely used as an electron transport material in planar‐perovskite solar cells. However, TiO2‐based planar‐perovskite solar cells exhibit low efficiencies due to intrinsic problems such as the unsuitable conduction band energy and low electron extraction ability of TiO2. Herein, the planar TiO2 electron transport layer (ETL) of perovskite solar cells is modified with ionic salt CuI via a simple one‐step spin‐coating process. The p‐type nature of the CuI islands on the TiO2 surface leads to modification of the TiO2 band alignment, resulting in barrier‐free contacts and increased open‐circuit voltage. It is found that the polarity of the CuI‐modified TiO2 surface can pull electrons to the interface between the perovskite and the TiO2, which improves electron extraction and reduces nonradiative recombination. The CuI solution concentration is varied to control the electron extraction of the modified TiO2 ETL, and the optimized device shows a high efficiency of 19.0%. In addition, the optimized device shows negligible hysteresis, which is believed to be due to the removal of trap sites and effective electron extraction by CuI‐modified TiO2. These results demonstrate the hitherto unknown effect of p‐type ionic salts on electron transport material.  相似文献   

13.
Anatase TiO2 is an extensively studied anode material for lithium‐ion batteries because of its superior capability of storing Li+ electrochemically. Here reversible lithium storage of TiO2 is achieved chemically using redox targeting reactions. In the presence of a pair of redox mediators, bis(pentamethylcyclopentadienyl)cobalt (CoCp* 2) and cobaltocene (CoCp2) in an electrolyte, TiO2 and its lithiated form Li x TiO2 can be reduced and oxidized by CoCp* 2 and CoCp2 +, respectively, which accompany Li+ insertion and extraction, albeit without attaching the TiO2 onto the electrode. The reversible chemical lithiation/delithiation and the involved phase transitions are unambiguously confirmed using density functional theory (DFT) calculations, UV‐vis spectroscopy, X‐ray photoelectron spectoscopy (XPS), and Raman spectroscopy. A redox flow lithium‐ion battery (RFLB) half‐cell is assembled and evaluated, which is a critical step towards the development of RFLB full cells.  相似文献   

14.
An open‐circuit voltage (Voc) of 1.57 V under simulated AM1.5 sunlight in planar MAPbBr3 solar cells with carbon (graphite) electrodes is obtained. The hole‐transport‐material‐free MAPbBr3 solar cells with the normal architecture (FTO/TiO2/MAPbBr3/carbon) show little hysteresis during current–voltage sweep under simulated AM1.5 sunlight. A solar‐to‐electricity power conversion efficiency of 8.70% is achieved with the champion device. Accordingly, it is proposed that the carbon electrodes are effective to extract photogenerated holes in MAPbBr3 solar cells, and the industry‐applicable carbon electrodes will not limit the performance of bromide‐based perovskite solar cells. Based on the analysis of the band alignment, it is found that the voltage (energy) loss across the interface between MAPbBr3 and carbon is very small compared to the offset between the valence band maximum of MAPbBr3 and the work function of graphite. This finding implies either Fermi level pinning or highly doped region inside MAPbBr3 layer exists. The band‐edge electroluminescence spectra of MAPbBr3 from the solar cells further support no back‐transfer pathways of electrons across the MAPbBr3/TiO2 interface.  相似文献   

15.
We report a comparative study on the use of four different mesoporous titanium dioxide (TiO2) photo‐electrodes for the fabrication of solid‐state dye‐sensitized solar cells (sDSSCs). The photovoltaic parameters of the device correlate with several intrinsic properties of the film, based not only on its morphological features, as commonly considered in standard characterizations, but also on the transport and the electronic properties of the photo‐electrode. These properties differ significantly for TiO2 electrodes processed using different colloidal pastes, and are decisive for the photovoltaic efficiency, ranging from 3.7% up to 5.1%. In particular, the dielectric permittivity of each mesoporous layer (εeff) and the number of traps (Nt) determined by the space‐charge‐limited current (SCLC) theory are found to be a bottle‐neck for the charge transport, greatly influencing the fill factor (FF) and open circuit voltage (Voc) of the cells. In addition, a direct correlation between TiO2 surface potential with the Voc was established. Cross‐analysis of key macroscopic parameters of the films prior to integration in the devices, in particular focusing on the determination of the capacitance and surface potential shift of the TiO2 mesoporous anode, represents a straightforward yet powerful method to screen and select the most suitable TiO2 for applications in sDSSCs.  相似文献   

16.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   

17.
The synthesis of in situ polymer‐functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g?1 at 10 C (3.35 A g?1)) and low (≈227 mAh g?1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%).  相似文献   

18.
A form of photoelectrode architecture suitable for inorganic semiconductor solar cells is reported. The developed architecture consists of hierarchically organized TiO2 nanostructures with several tens of nanometer‐sized particles that have a large surface area and open channels with several hundred‐nanometer‐gaps perpendicular to the substrate. These are tailored by controlling the kinetic energy of the ablated species during pulsed laser deposition (PLD). To fabricate the solar cells, CdS and CdSe inorganic sensitizers are assembled onto the architecture by successive ionic layer adsorption and reaction and polysulfide solution is used as an electrolyte with lead sulfide counter‐electrodes. The inorganic semiconductor solar cells using the developed architecture (PLD‐TiO2) show high energy conversion efficiencies of 5.57% compared to a conventional mesoporous TiO2 film(NP‐TiO2) (3.84%) with an optical mask at 1 sun of illumination. The improved cell performance of PLD‐TiO2 is attributed to greater light‐harvesting ability, which results in the enhancement of the Jsc value. PLD‐TiO2 absorbs more CdS/CdSe because of its larger surface area and excellent adhesion properties with fluorine‐doped tin oxide (FTO) substrates. Additionally, due to its unique channel‐shaped architecture, PLD‐TiO2 has a longer electron lifetime compared to NP‐TiO2.  相似文献   

19.
A novel atomic stacking transporting layer (ASTL) based on 2D atomic sheets of titania (Ti1?δO2) is demonstrated in organic–inorganic lead halide perovskite solar cells. The atomically thin ASTL of 2D titania, which is fabricated using a solution‐processed self‐assembly atomic layer‐by‐layer deposition technique, exhibits the unique features of high UV transparency and negligible (or very low) oxygen vacancies, making it a promising electron transporting material in the development of stable and high‐performance perovskite solar cells. In particular, the solution‐processable atomically thin ASTL of 2D titania atomic sheets shows superior inhibition of UV degradation of perovskite solar cell devices, compared to the conventional high‐temperature sintered TiO2 counterpart, which usually causes the notorious instability of devices under UV irradiation. The discovery opens up a new dimension to utilize the 2D layered materials with a great variety of homostructrual or heterostructural atomic stacking architectures to be integrated with the fabrication of large‐area photovoltaic or optoelectronic devices based on the solution processes.  相似文献   

20.
This study deals with the morphofunctional influence of 72 h exposure to a 6 mT static magnetic field (SMF) during differentiation induced by 50 ng/ml 12‐O‐tetradecanoyl‐13‐phorbol acetate (TPA) in human leukaemia U937 cells. The cell morphology of U937 cells was investigated by optic and electron microscopy. Specific antibodies and/or molecules were used to label CD11c, CD14, phosphatidylserine, F‐actin and to investigate the distribution and activity of lysosomes, mitochondria and SER. [Ca2+]i was evaluated with a spectrophotometer. The degree of differentiation in SMF‐exposed cells was lower than that of non‐exposed cells, the difference being exposure time‐dependent. SMF‐exposed cells showed cell shape and F‐actin modification, inhibition of cell attachment, appearance of membrane roughness and large blebs and impaired expression of specific macrophagic markers on the cell surface. The intracellular localization of SER and lysosomes was only partially affected by exposure. A significant localization of mitochondria with an intact membrane potential at the cell periphery in non‐exposed, TPA‐stimulated cells was observed; conversely, in the presence of SMF, mitochondria were mainly localised near the nucleus. In no case did SMF exposure affect cell viability. The sharp intracellular increase of [Ca2+]i could be one of the causes of the above‐described changes. Bioelectromagnetics 30:352–364, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号