首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinic acetylcholine receptors (nAChR), the primary cell surface targets of nicotine, have implications in various neurological disorders. Here we investigate the proteome‐wide effects of nicotine on human haploid cell lines (wildtype HAP1 and α7KO‐HAP1) to address differences in nicotine‐induced protein abundance profiles between these cell lines. We performed an SPS‐MS3‐based TMT10‐plex experiment arranged in a 2‐3‐2‐3 design with two replicates of the untreated samples and three of the treated samples for each cell line. We quantified 8775 proteins across all ten samples, of which several hundred differed significantly in abundance. Comparing α7KO‐HAP1 and HAP1wt cell lines to each other revealed significant protein abundance alterations; however, we also measured differences resulting from nicotine treatment in both cell lines. Among proteins with increased abundance levels due to nicotine treatment included those previously identified: APP, APLP2, and ITM2B. The magnitude of these changes was greater in HAP1wt compared to the α7KO‐HAP1 cell line, implying a potential role for the α7 nAChR in HAP1 cells. Moreover, the data revealed that membrane proteins and proteins commonly associated with neurons were predominant among those with altered abundance. This study, which is the first TMT‐based proteome profiling of HAP1 cells, defines further the effects of nicotine on non‐neuronal cellular proteomes.  相似文献   

2.
Toxic compounds in tobacco, such as nicotine, may adversely affect pancreatic function. We aim to determine nicotine‐induced protein alterations in pancreatic cells, thereby revealing links between nicotine exposure and pancreatic disease. We compared the proteomic alterations induced by nicotine treatment in cultured pancreatic cells (mouse, rat, and human stellate cells and human duct cells) using MS‐based techniques, specifically SDS‐PAGE (gel) coupled with LC‐MS/MS and spectral counting. We identified thousands of proteins in pancreatic cells, hundreds of which were identified exclusively or in higher abundance in either nicotine‐treated or untreated cells. Interspecies comparisons of stellate cell proteins revealed several differentially abundant proteins (in nicotine treated versus untreated cells) common among the three species. Proteins appearing in all nicotine‐treated stellate cells include amyloid beta (A4), procollagen type VI alpha 1, integral membrane protein 2B, and toll‐interacting protein. Proteins that were differentially expressed upon nicotine treatment across cell lines were enriched in certain pathways, including nicotinic acetylcholine receptor, cytokine, and integrin signaling. At this analytical depth, we conclude that similar pathways are affected by nicotine, but alterations at the protein level among stellate cells of different species vary. Further interrogation of such pathways will lead to insights into the potential effect of nicotine on pancreatic cells at the biomolecular level and the extension of this concept to the effect of nicotine on pancreatic disease.  相似文献   

3.
Using multiplexed quantitative proteomics, we analyzed cell cycle‐dependent changes of the human proteome. We identified >4,400 proteins, each with a six‐point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co‐regulated, we clustered the proteins with abundance profiles most similar to known Anaphase‐Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/CCDH1‐dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1‐dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de‐)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.  相似文献   

4.
Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. The role that extracellular vesicles (EVs), microvesicles and exosomes, released by MM cells have in cell‐to‐cell communication and signaling in the bone marrow is currently unknown. This paper describes the proteomic content of EVs derived from MM.1S and U266 MM cell lines. First, we compared the protein identifications between the vesicles and cellular lysates of each cell line finding a large overlap in protein identifications. Next, we applied label‐free spectral count quantitation to determine proteins with differential abundance between the groups. Finally, we used bioinformatics to categorize proteins with significantly different abundances into functional groups. The results illustrate the first use of label‐free spectral counting applied to determine relative protein abundances in EVs.  相似文献   

5.
Over the last years virus–host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2‐D DIGE and nanoHPLC‐nanoESI‐MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2‐D gels of the proteomes of uninfected and influenza‐infected host cells, 16 quantitatively altered protein spots (at least ±1.7‐fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon‐induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome‐wide profiling of virus infection can provide insights into complexity and dynamics of virus–host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.  相似文献   

6.
Mass spectrometry‐based proteomic strategies can profile the expression level of proteins in response to external stimuli. Nicotine affects diverse cellular pathways, however, the nicotine‐induced alterations on the global proteome across human cell lines have not been fully elucidated. We measured perturbations in protein levels resulting from nicotine treatment in four cell lines—HEK, HeLa, PaSC, and SH‐SY5Y—in a single experiment using tandem mass tags (TMT10‐plex) and high‐resolution mass spectrometry. We quantified 8590 proteins across all cell lines. Of these, nicotine increased the abundance of 31 proteins 1.5‐fold or greater in all cell lines. Likewise, considering proteins with altered levels in at least three of the four cell lines, 64 were up‐regulated, while one was down‐regulated. Gene ontology analysis revealed that ~40% of these proteins were membrane bound, and functioned in transmembrane signaling and receptor activity. We highlighted proteins, including APP, APLP2, LAPTM4B, and NCOA4, which were dysregulated by nicotine in all cell lines investigated and may have implications in downstream signaling pathways, particularly autophagy. Using the outlined methodology, studies in additional (including primary) cell lines will provide further evidence that alterations in the levels of these proteins are indeed a general response to nicotine and thereby merit further investigation.  相似文献   

7.
Proteome comparison of cell lines derived from cancer and normal breast epithelium provide opportunities to identify differentially expressed proteins and pathways associated with specific phenotypes. We employed 16O/18O peptide labeling, FT-ICR MS, and an accurate mass and time (AMT) tag strategy to simultaneously compare the relative abundance of hundreds of proteins in non-cancer and cancer cell lines derived from breast tissue. A cell line reference panel allowed relative protein abundance comparisons among multiple cell lines and across multiple experiments. A peptide database generated from multidimensional LC separations and MS/MS analysis was used for subsequent AMT tag-based peptide identifications. This peptide database represented a total of 2299 proteins, including 514 that were quantified in five cell lines using the AMT tag and 16O/18O strategies. Eighty-six proteins showed at least a threefold protein abundance change between cancer and non-cancer cell lines. Hierarchical clustering of protein abundance ratios revealed that several groups of proteins were differentially expressed between the cancer cell lines.  相似文献   

8.
The formation and progression of mudulloblastoma (MB) is poorly understood. However, somatic inactivation of pRb/p105, in combination with a somatic or a germ‐line TP53 inactivation, leads to MB in a mouse model. Presently, there is no specific evidence of pathway/s alterations for the other two members of the retinoblastoma family, pRb2/p130 and/or p107 in MB. JC virus (JCV) is a human polyomavirus. Although there is no firm evidence that this virus plays a causal role in human neoplasia, it has been clearly proven that JCV is highly oncogenic when injected into the brain of experimental animals. The mechanism of JCV‐induced tumorigenesis is not entirely clear. However, several studies relate the oncogenic properties of JCV mainly to its early protein large T‐antigen (T‐Ag), which is able to bind and inactivate both TP53 and Rb family proteins. Here, we compared the protein expression profiles of p53, p73, pRb family proteins, and PCNA, as main regulators of cell proliferation and death, in different cell lines of mouse primitive neuroectodermal tumors (PNET), either T‐Ag‐positive or ‐negative, and in human MB cell lines. Our goal was to determine if changes in the relative expression of these regulators could trigger molecular perturbations underlying MB pathogenesis in mouse and human cells. Our results support that the presence of JCV T‐Ag may interfere with the expression of pRb family proteins, specific p73 isoforms, and p53. In turn, this “perturbation” may trigger a network of signals strictly connected with survival and apoptosis. J. Cell. Biochem. 110: 182–190, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL‐17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL‐17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL‐17F expression improves the efficiency of cell line subcloning processes. IL‐17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame. Biotechnol. Bioeng. 2013; 110: 1153–1163. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
We previously compared changes in individual protein abundance between the proteomes of GS-NS0 cell lines with varying rates of cell-specific recombinant monoclonal antibody production (qMab). Here we extend analyses of our proteomic dataset to statistically determine if particular cell lines have distinct functional capabilities that facilitate production of secreted recombinant Mab. We categorized 79 proteins identified by mass spectrometry according to their biological function or location in the cell and statistically compared the relative abundance of proteins in each category between GS-NS0 cell lines with varying qMab. We found that the relative abundance of proteins in ER chaperone, non-ER chaperone, cytoskeletal, cell signaling, metabolic, and mitochondrial categories were significantly increased with qMab. As the GS-NS0 cell line with highest qMab also had an increased intracellular abundance of unassembled Mab heavy chain (HC), we tested the hypothesis that the increased ER chaperone content was caused by induction of an unfolded protein response (UPR) signaling pathway. Immunoblot analyses revealed that spliced X-box binding protein 1 (XBP1), a marker for UPR induction, was not detectable in the GS-NS0 cells with elevated qMab, although it was induced by chemical inhibitors of protein folding. These data suggest that qMab is functionally related to the abundance of specific categories of proteins that together facilitate recombinant protein production. We infer that individual cells within parental populations are more functionally equipped for high-level recombinant protein production than others and that this bias could be used to select cells that are more likely to achieve high qMab.  相似文献   

11.
Efficient and effective cell line screening is paramount toward a successful biomanufacturing program. Here we describe the implementation of 24‐deep well plate (24‐DWP) screening of CHO lines as part of the cell line development platform at AbbVie. Incorporation of this approach accelerated the identification of the best candidate lines for process development. In an effort to quantify and predict process performance comparability, we compared cell culture performance in and in shake flasks, for a panel of Chinese Hamster Ovary cell lines expressing a monoclonal antibody. The results in 24‐DWP screening showed reduced growth profiles, but comparable viability profiles. Slow growers in 24‐DWP achieved the highest productivity improvement upon scaling‐up to shake flasks. Product quality of the protein purified from shake flasks and 24‐DWP were also compared. The 24‐DWP culture conditions were found to influence the levels of acidic species, reduce the G0 N‐glycan species, and increase the high‐mannose N‐glycan species. Nevertheless, the identification of undesirable profiles is executed consistently with the scaled‐up culture. We further employed multivariate data analysis to capture differences depending on the two scales and we could demonstrate that cell line profiles were adequately clustered, regardless of the vessel used for the development. In conclusion, the 24‐DWP platform was reasonably predictive of the parameters crucial for upstream process development activities, and has been adapted as part of the AbbVie cell line development platform. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:175–186, 2018  相似文献   

12.
13.
Studies of protein N‐glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N‐glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N‐glycan patterns as documented using mass spectrometry and glycan‐recognising antibodies, indicating successful identification of null mutations in the target glyco‐genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3‐fucosyltransferase (Lj3fuct) mutant completely lacked α1,3‐core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N‐glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N‐acetylglucosaminyltransferase I, and α1,3‐fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N‐glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N‐glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian‐like N‐glycosylation features.  相似文献   

14.
15.
Accurate measurement of global and specific protein synthesis rates is becoming increasingly important, especially in the context of biotechnological applications such as process modeling or selection of production cell clones. While quantification of total protein translation across whole cell populations is easily achieved, methods that are capable of tracking population dynamics at the single‐cell level are still lacking. To address this need, we apply O‐propargyl‐puromycin (OPP) labeling to assess total protein synthesis in single recombinant Chinese hamster ovary (CHO) cells by flow cytometry. Thereby we demonstrate that global protein translation rates slightly increase with progression through the cell cycle during exponential growth. Stable CHO cell lines producing recombinant protein display similar levels of total protein synthesis as their parental CHO host cell line. Global protein translation does not correlate with intracellular product content of three model proteins, but the host cell line with high transient productivity has a higher OPP signal. This indicates that production cell lines with increased overall protein synthesis capacity can be identified by our method at the single‐cell level. In conclusion, OPP‐labeling allows rapid and reproducible assessment of global protein synthesis in single CHO cells, and can be multiplexed with DNA staining or any type of immunolabeling of specific proteins or markers for organelles.  相似文献   

16.
Cryopreservation provides the foundation for research, development, and manufacturing operations in the CHO‐based biopharmaceutical industry. Despite its criticality, studies are lacking that explicitly demonstrate that the routine cell banking process and the potential stress and damage during cryopreservation and recovery from thaw have no lasting detrimental effects on CHO cells. Statistics are also scarce on the decline of cell‐specific productivity (Qp) over time for recombinant CHO cells developed using the glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection system. To address these gaps, we evaluated the impact of freeze‐thaw on 24 recombinant CHO cell lines (generated by the GS/MSX selection system) using a series of production culture assays. Across the panel of cell lines expressing one of three monoclonal antibodies (mAbs), freeze‐thaw did not result in any significant impact beyond the initial post‐thaw passages. Production cultures sourced from cryopreserved cells and their non‐cryopreserved counterparts yielded similar performance (growth, viability, and productivity), product quality (size, charge, and glycosylation distributions), and flow cytometric profiles (intracellular mAb expression). However, many production cultures yielded lower Qp at increased cell age: 17 of the 24 cell lines displayed ≥20% Qp decline after ~2–3 months of passaging, irrespective of whether the cells were previously cryopreserved. The frequency of Qp decline underscores the continued need for understanding the underlying mechanisms and for careful clone selection. Because our experiments were designed to decouple the effects of cryopreservation from those of cell age, we could conclusively rule out freeze‐thaw as a cause for Qp decline. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:463–477, 2018  相似文献   

17.
Chinese hamster ovary (CHO) cells are the major mammalian host for producing various therapeutic proteins. Among CHO cells, the dihydrofolate reductase‐deficient CHO DG44 cell line has been used as a popular mammalian host because of the availability of a well‐characterized genetic selection and amplification system. However, this cell line has not been studied at the proteome level. Here, the first detailed proteome analysis of the CHO DG44 cell line is described. A protein reference map of the CHO DG44 cell line was established by analyzing whole cellular proteins using 2‐DE with various immobilized pH gradients (pHs 3–10, 5–8, and 3–6) in the first dimension and a 12% acrylamide gel in the second dimension. The map is composed of over 1400 silver‐stained protein spots. Among them, 179 protein spots, which represent proteins associated with various biological processes and cellular compartments, were identified based on MALDI‐TOF‐MS and MS/MS. This proteome database should be valuable for better understanding of CHO cell physiology and protein expression patterns which may lead to efficient therapeutic protein production.  相似文献   

18.
Obtaining highly productive Chinese hamster ovary (CHO)‐cell clones for the production of therapeutic proteins relies on multiple time‐consuming selection steps. Several CHO‐cell strains with high degrees of genomic and epigenetic variation are available. Each harbor potential advantages and disadvantages for any given product, particularly those considered difficult to express. A simple test system to quickly assess compatibility of cell line and product may therefore prove useful. Transient plasmid transfection falls short of the specific productivities of stable producer cells, making it unsuitable for the elucidation of high specific productivity bottlenecks. The aim of the study is to reach specific productivities approaching those of industrial production cell lines by transfection of in vitro transcribed mRNA. The system is characterized with respect to transfection efficacy (by quantitative PCR) and protein production (by flow cytometry and biolayer interferometry). Fluorescence of intracellular eGFP saturates at higher amounts of mRNA per cell, while the amount of secreted and intracellular EPO‐Fc remain linearly correlated to the amount of mRNA taken up. Nevertheless, MS shows a severe reduction in N‐glycosylation quality. This method allows for rapid elucidation of bottlenecks that would otherwise remain undetected until later during cell line development, giving insight into suitable strategies for preemptive targeted metabolic engineering and host cell line optimization.  相似文献   

19.
Chen Wang  Lukasz Kurgan 《Proteomics》2016,16(10):1486-1498
Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty‐by‐association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (~548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA‐binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA‐binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation.  相似文献   

20.
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号