首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zinc (Zn) is a component of numerous enzymes that function in a wide range of biological process, including growth, development, immunity and intermediary metabolism. Zn may play a role in chronic states such as cardiovascular disease and diabetes mellitus. Zn acts as cofactor and for many enzymes and proteins and has antioxidant, antiinflammatory and antiapoptotic effects. Taking into consideration that lung is a possible target organ for diabetic complications, the aim of this study was to investigate the protective role of zinc on the glycoprotein content and antioxidant enzyme activities of streptozotocin (STZ) induced diabetic rat tissues. Female Swiss albino rats were divided into four groups. Group I, control; Group II, control + zinc sulfate; Group III, STZ-diabetic; Group IV, diabetic + zinc sulfate. Diabetes was induced by intraperitoneal injection of STZ (65 mg/kg body weight). Zinc sulfate was given daily by gavage at a dose of 100 mg/kg body weight every day for 60 days to groups II and IV. At the last day of the experiment, rats were sacrificed, lung tissues were taken. Also, glycoprotein components, tissue factor (TF) activity, protein carbonyl (PC), advanced oxidative protein products (AOPP), hydroxyproline, and enzyme activities in lung tissues were determined. Glycoprotein components, TF activity, lipid peroxidation, non enzymatic glycation, PC, AOPP, hydroxyl proline, lactate dehydrogenase, catalase, superoxide dismutase, myeloperoxidase, xanthine oxidase, adenosine deaminase and prolidase significantly increased in lung tissues of diabetic rats. Also, glutathione levels, paraoxonase, arylesterase, carbonic anhydrase, and Na+/K+- ATPase activities were decreased. Administration of zinc significantly reversed these effects. Thus, the study indicates that zinc possesses a significantly beneficial effect on the glycoprotein components and oxidant/antioxidant enzyme activities.  相似文献   

2.
Diabetes is associated with long‐term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)‐induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na+K+‐adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ‐ALA‐D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ‐induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3, control/Metf + VD3, diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3. Thirty days after treatment, animals were submitted to contextual fear‐conditioning and open‐field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ‐ALA‐D and Na+K+‐ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na+K+‐ATPase was reverted when compared with non‐treated rats, but the increase in δ‐ALA‐D activity was not. VD3 prevented diabetes‐induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na+K+‐ATPase and AChE in cerebral cortex in type 1 diabetic rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Angiotensin‐converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)‐induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ‐diabetic rats, and STZ‐diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na+/K+‐ATPase activity, oxidative stress, and serum transforming growth factor‐β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes‐induced changes in ACE expression and Na+/K+‐ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:378‐387, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21500  相似文献   

4.
The present study investigated whether the antioxidant activity of p,p'‐methoxyl‐diphenyl diselenide [(MeOPhSe)2] is involved in its protective effect against cognitive impairment induced by streptozotocin (STZ) in a model of sporadic dementia of Alzheimer's type (SDAT). Swiss mice were treated with STZ or vehicle [2 µl of 2·5 mg ml?1 solution; intracerebroventricularly (i.c.v.)] twice, 48 h apart. (MeOPhSe)2 (25 mg kg?1) or vehicle was orally administered 30 min prior to each STZ treatment. Neuroprotector effect of (MeOPhSe)2 on the behavioral performance of mice on spatial recognition memory consolidation was investigated in the Y‐maze test. After that, mouse brains were removed for measuring antioxidant parameters. (MeOPhSe)2 protected against the impairment in learning and memory caused by i.c.v. administration of STZ in mice. (MeOPhSe)2 protected against the increase in reactive species and the reduction of glutathione levels, as well as, the increase in superoxide dismutase and glutathione S‐transferase activities caused by STZ in whole brain. These results suggest that antioxidant property is involved, at least in part, in the neuroprotective effect of (MeOPhSe)2 on SDAT induced by STZ in mice. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In the present study, we investigate the effects of atorvastatin on the lipid profile, oxidative stress, and liver enzyme markers, and its protective activity against diabetic complications, in streptozotocin (STZ)‐induced diabetic rats. Fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and high‐density lipoprotein (HDL) levels, as well as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzyme activities, were measured 7 weeks after the administration of STZ and atorvastatin. Thiobarbituric acid reactive substances (TBARS), non‐protein associated sulfhydryl (NP‐SH), total sulfhydryl (T‐SH), and nitric oxide (NO) levels were measured to evaluate oxidative stress. Atorvastatin was found to inhibit ALT and AST activities and to reduce FBG levels in rats with STZ‐induced diabetes. Moreover, atorvastatin treatment significantly reduced lipid peroxidation in kidney, heart, and eye tissues (P < 0.001, for all), and resulted in a significant increase in NP‐SH levels in brain tissues (P < 0.001). Total NO and nitrate levels increased significantly after atorvastatin treatment (P < 0.01). Our results revealed that atorvastatin has a protective effect against STZ‐induced oxidative damage by reducing TBARS levels and increasing NP‐SH levels, has a hepatoprotective effect by decreasing ALT and AST activities. It also shows the antihyperglycemic activity by lowering FBG levels.  相似文献   

6.
Abnormal regulation of glucose and impaired carbohydrate utilization that result from a defective or deficient insulin are the key pathogenic events in type 2 diabetes mellitus (T2DM). Experimental and clinical studies have shown the antidiabetic effects of Pycnogenol® (PYC). However, the protective effects of PYC on the liver, a major metabolic organ which primarily involves in glucose metabolism and maintains the normal blood glucose level in T2DM model have not been studied. The present study evaluated the beneficial effect of PYC, French maritime pine bark extract, on hyperglycemia and oxidative damage in normal and diabetic rats. Diabetes was induced by feeding rats with a high-fat diet (HFD; 40%) for 2 weeks followed by an intraperitoneal (IP) injection of streptozotocin (STZ; 40 mg/kg; body weight). An IP dose of 10 mg/kg PYC was given continually for 4 weeks after diabetes induction. At the end of the 4-week period, blood was drawn and the rats were then sacrificed, and their livers dissected for biochemical and histopathological assays. In the HFD/STZ group, levels of glycosylated hemoglobin (HbA1c), significantly increased, while hepatic glycogen level decreased. PYC supplementation significantly reversed these parameters. Moreover, supplementation with PYC significantly ameliorated thiobarbituric reactive substances, malonaldehyde, protein carbonyl, glutathione and antioxidant enzymes [glutathione-S-transferase, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase] in the liver of HFD/STZ rats. These results were supported with histopathological examinations. Although detailed studies are required for the evaluation of the exact protective mechanism of PYC against diabetic complications, these preliminary experimental findings demonstrate that PYC exhibits antidiabetic effects in a rat model of type 2 DM by potentiating the antioxidant defense system. These finding supports the efficacy of PYC for diabetes management.  相似文献   

7.
In this study, we aimed to investigate the relationship among trace elements (Cu, Fe, Zn and Mg) on oxidative and anti-oxidative substances in liver and kidneys tissues in streptozotocin (STZ) diabetic rat model. The mean levels of Fe and Cu were found significantly higher in the liver and kidneys of the diabetic rats, in comparison to the control rats. On the other hand, the mean levels of Zn and Mg in the liver and kidneys of the diabetic rats were significantly lower than in the control rats. The liver and kidneys malonaldehyde (MDA) levels of the experimental group were found to be higher than in the control group (p < 0.001; p < 0.01, respectively) after 4 weeks of the experimental period. Superoxide dismutase (SOD) activities and glutathione (GSH) levels in the liver tissue of STZ-induced diabetic rats were found to be lower in the experimental group than in the control group (p < 0.01). SOD activity and GSH concentration in kidneys of the diabetic rats were significantly diminished with respect to the control group (p < 0.01). In conclusion, the present results indicate that the increase of Fe and Cu together with decreas of Zn and Mg concentration in liver and kidney of STZ-induced diabetic rats may be involved in disturbances of oxidative balance in both the tissues. Therefore, these findings may contribute to explain the role of impaired ion metabolism of some elements in the progression of diabetic oxidative complications.  相似文献   

8.
Resveratrol (RSV), polyphenol from grape, was studied to evaluate its effects on calorimetric parameters, energy metabolism, and antioxidants in the myocardium of diabetic rats. The animals were randomly divided into four groups (n = 8): C (control group): normal rats; C-RSV: normal rats receiving RSV; DM: diabetic rats; and DM-RSV: diabetics rats receiving RSV. Type 1 diabetes mellitus was induced with administration of streptozotocin (STZ; 60 mg−1 body weight, single dose, i.p.). After 48 hours of STZ administration, the animals received RSV (1.0 mg/kg/day) for gavage for 30 days. Food, water, and energy intake were higher in the DM group, while administration of RSV caused decreases (p<0.05) in these parameters. The glycemia decreased and higher final body weight increased in DM-RSV when compared with the DM group. The diabetic rats showed higher serum-free fatty acid, which was normalized with RSV. Oxygen consumption (VO2) and carbon dioxide production (VCO2) decreased (p<0.05) in the DM group. This was accompanied by reductions in RQ. The C-RSV group showed higher VO2 and VCO2 values. Pyruvate dehydrogenase activity was lower in the DM group and normalizes with RSV. The DM group exhibited higher myocardial β-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase activity, and RSV decreased the activity of these enzymes. The DM group had higher cardiac lactate dehydrogenase compared to the DM-RSV group. Myocardial protein carbonyl was increased in the DM group. RSV increased reduced glutathione in the cardiac tissue of diabetic animals. The glutathione reductase activity was higher in the DM-RSV group compared to the DM group. In conclusion, diabetes is accompanied by cardiac energy metabolism dysfunction and change in the biomarkers of oxidative stress. The cardioprotective effect may be mediated through RVS''s ability to normalize free fatty acid oxidation, enhance utilization glucose, and control the biomarkers'' level of oxidative stress under diabetic conditions.  相似文献   

9.
This study investigates the effect of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor, and pentoxifylline (PTX), a tumour necrosis factor–alpha (TNF‐α) inhibitor, on lipopolysaccharide (LPS)‐induced cardiac stress. Rats were divided into four groups: group I served as a control, group II (LPS) received a single intraperitoneal injection of LPS (10 mg·kg–1), group III (LPS+AG) and group IV (LPS+PTX) were injected with either AG (100 mg·kg–1) or PTX (150 mg·kg–1) intraperitoneally 10 days prior to LPS administration. Normalization of cardiac levels of nitrite/nitrate (NOX), malondialdehyde (MDA), glutathione (GSH), heme oxygenase‐1 (HO‐1), glutathione peroxidase (GPx) and Na+, K+‐ATPase activities was evident in the AG group. Both AG and PTX decreased the elevated serum TNF‐α levels, the activities of lactate dehydrogenase (LDH), creatine kinase (CK) and cardiac myeloperoxidase (MPO). The levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and phosphocreatine (PCr) were enhanced following AG and PTX pretreatments. Calcium (Ca2+) levels were altered, and the histopathological observations supported the described results. Conclusively, the study highlights the cardioprotective potential of AG and PTX with superior results from AG. These findings reveal the relative contribution of nitric oxide and TNF‐α to oxidative stress and energy failure during endotoxemia. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This study was planned to investigate the protective effect of l (+)‐ascorbic acid (Vit C) on CCl4‐induced hepatotoxicity and oxidative stress in the liver of Wistar rats (Rattus Norvegicus, strain Wistar). Twenty‐four adult male Wistar rats were fed with standard rat chow diet for 10 days and randomly were divided into four groups of six each as follows: (1) control, (2) CCl4, (3) “CCl4 + Vit C”, (4) Vit C groups. CCl4 was applied to rats belonging to CCl4 and “CCl4 + Vit C” groups subcutaneously at 1 mg kg?1 dose CCl4 for 3 days. Vit C applied to “CCl4 + Vit C” and “Vit C” group rats intraperitoneally at 300 mg kg?1 dose for 3 days. All rats were sacrificed and livers were quickly removed on the fourth day of the experiment. MDA, total glutathione (T.GSH) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH‐PX) activities were measured in the liver of all groups of rats and also serum alanine amino transferase (ALT) and aspartate amino transferase (AST) activities were detected to determine liver functions in all groups of rats. Histopathological changes were evaluated by light and transmission electron microscopes. In “CCl4 + Vit C” group, MDA level was significantly decreased (p < 0.05) and SOD, CAT, GSH‐PX activities were significantly increased (p < 0.005, 0.01, 0.05) respectively, T.GSH level was significantly increased (p < 0.005) and serum ALT and AST activities were significantly decreased (p < 0.01, 0.05), respectively, when compared with CCl4 group. These results show that Vit C has a highly protective effect on hepatotoxicity and oxidative stress caused by CCl4. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This study aims to investigate the oxidative stress and hepatocellular injury induced by Cr3+ in chicken. Different doses of CrCl3 solutions (50% LD50, 25% LD50, and 12.5% LD50) and equivalent water were orally administered to chicken. Chicken liver samples were measured for the activities of antioxidant enzymes, the contents of glutathione, total antioxidant capacity (T‐AOC), malondialdehyde (MDA), and hydrogen peroxide to indirectly evaluate the oxidative stress in chicken liver. Results indicated that the oral administration of Cr3+ at high dose significantly increased (P < 0.05) the MDA levels after 28 days of exposure, with decreased T‐AOC, glutathione, and antioxidant enzymes activities. Low and medium doses groups show that T‐AOC, glutathione, and antioxidant enzymes activities increased after 14 days, then decreased gradually, but low and medium groups higher than control group, only high group lower than control group finally. These statistics and histopathological analysis suggest that high dose and long‐term exposure of Cr3+ induce oxidative stress and hepatocellular injury.  相似文献   

12.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

13.
Both IDDM and NIDDM are characterized by deviations in peripheral T and B lymphocyte count, Thelper:Tsuppressor ratio, as well as by impaired Tsuppressor function. These abnormalities may promote insulin antibody and other antibody production, contributing to overt diabetes mellitus development in early stage of the disease. In the present study we explored the effects of cerebrocrast (1,4‐dihydropyridine derivative) administration on Con A‐ and IL‐2‐stimulated tissue lymphocyte blast transformation activity and on the thymus and lymph node mass in normal and streptozotocin (STZ)‐induced diabetic rats. It was established that cerebrocrast, administered four times at the doses of 0·05 and 0·5 mg kg−1, has long‐term (up to 14 days) effects on the immune system and protects against the toxic effect of STZ in STZ‐induced diabetic rats, preventing thymus and lymph node mass loss. We conclude that cerebrocrast administration leads to the increase in number and activity of Thelper and Tsuppressor lymphocytes. Glycolysis and DNA synthesis in these cells is augmented under the influence of cerebrocrast administration. We propose that the increase in lymphocyte suppressive activity caused by cerebrocrast administration may prevent the development of IDDM and NIDDM in patients with pre‐diabetes, but in patients with early and overt diabetes mellitus the drug administration may prevent the overexpression of insulin antibodies and other antibodies. The effect of cerebrocrast on the de novo production of insulin and IL‐2 receptors may be beneficial for IDDM and NIDDM patients. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
An experiment was conducted to investigate the effects of zinc glycinate (Zn-Gly) supplementation as an alternative for zinc sulphate (ZnSO4) on productive and reproductive performance, zinc (Zn) concentration and antioxidant status in broiler breeders. Six hundred 39-week-old Lingnan Yellow broiler breeders were randomly assigned to 6 groups consisting of 4 replicates with 25 birds each. Breeders were fed a basal diet (control group, 24 mg Zn/kg diet), basal diet supplemented with 80 mg Zn/kg diet from ZnSO4 or basal diet supplemented with 20, 40, 60 and 80 mg Zn/kg diet from Zn-Gly. The experiment lasted for 8 weeks after a 4-week pre-test with the basal diet, respectively. Results showed that Zn supplementation, regardless of sources, improved (P?<?0.05) the feed conversion ratio (kilogram of feed/kilogram of egg) and decreased broken egg rate, and elevated (P?<?0.05) the qualified chick rate. Compared with the ZnSO4 group, the 80 mg Zn/kg Zn-Gly group significantly increased (P?<?0.05) average egg weight, fertility, hatchability and qualified chick rate, whereas it decreased (P?<?0.05) broken egg rate. The Zn concentrations in liver and muscle were significantly higher (P?<?0.05) in 80 mg Zn/kg Zn-Gly group than that in ZnSO4 group. Compared with ZnSO4 group, 80 mg Zn/kg Zn-Gly group significantly elevated (P?<?0.05) the mRNA abundances of metallothionein (MT) and copper-zinc superoxide (Cu-Zn SOD), as well as the Cu-Zn SOD activity and MT concentration in liver. Moreover, the 80 mg Zn/kg Zn-Gly group had higher (P?<?0.05) serum T-SOD and Cu-Zn SOD activities than that in the ZnSO4 group. This study indicated that supplementation of Zn in basal diet improved productive and reproductive performance, Zn concentration and antioxidant status in broiler breeders, and the 80 mg Zn/kg from Zn-Gly was the optimum choice for broiler breeders compared with other levels of Zn from Zn-Gly and 80 mg/kg Zn from ZnSO4.  相似文献   

15.
Biochemical effects of Citrullus colocynthis in normal and diabetic rats   总被引:2,自引:0,他引:2  
Diabetes mellitus is one of the most common endocrine diseases. In UAE many traditional plants such as the Citrullus colocynthis (Handal) are used as antidiabetic remedies. The aim of this study was to examine the effect of the aqueous extract of the seed of C. colocynthis on the biochemical parameters of normal and streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal (60 mg/kg body wt1) injection of STZ. Normal and diabetic rats were fed with the plant extract daily by oral intubation for 2 weeks. Blood sample were collected at the beginning and end of the experiment for the measurement of biochemical parameters. The plasma level of alanine aminotranferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), lactic dehydrogenase (LDH) increased significantly after the onset of diabetes. Oral administration of the plant extract reduced the plasma level of AST and LDH significantly. However, the plant extract failed to reduce the increased blood level of GGT and ALP in diabetic rats. Blood urea nitrogen (BUN) increased significantly after the onset of diabetes. No significant difference was observed in the blood creatinine, K+, Na+, Ca2+ and P levels of normal and diabetic rats. The plant extract did not have any effect on BUN level, however, it caused an increase in the level of K+, Na+ in diabetic rats. In conclusion, oral administration of the aqueous extract of the C. colocynthis can ameliorate some of the toxic effects of streptozotocin. (Mol Cell Biochem 261: 143–149, 2004)  相似文献   

16.
To determine whether the enhanced stress tolerance of ZnSO4 with NiSO4-treated Mimulus guttatus Fischer ex DC. plants was associated with the glutathione (GR-GSH) system, we investigated the changes in glutathione redox state (reduced (GSH), oxidized (GSSG) forms, total reduced (GSHt) glutathione, and GSH/GSSG ratio) and in the enzymatic activities of glutathione reductase (GR) and peroxidatic glutathione S-transferases (GST). The 6-week-old plants were grown in water culture during 4 weeks on a modified Rorison’s medium with ZnSO4 (50, 100, and 200 μM) and NiSO4 (20 and 80 μM) in a condition of separate or simultaneous supply of the components. Dry biomass accumulations of roots and shoots were not influenced by the examined treatments. The positive correlations between the total external concentrations of ZnSO4 and NiSO4 and the total Zn and Ni contents in roots and leaves were found. It was determined that the MDA content was higher in the ZnSO4-treated plants than in the NiSO4-treated ones. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 decreased the Zn-induced increase in the MDA levels. The inverse proportionality between the MDA and pigment levels in leaves was found. The Zn-Ni interactions were shown to induce the decreases in the GR activity, the total peroxidatic GST activity, and the GSH/GSSG ratio in roots. However, in leaves, the GR activity and the GSH/GSSG ratio were significantly increased and the total peroxidatic GST activity was decreased. The supplementation of the ZnSO4-treated plants with varied concentrations of NiSO4 restored the Zn-induced reduction in the GSHt levels in roots and decreased the Zn-induced increase in the GSSG levels in leaves, which resulted in more reduced state of the intracellular environment. It was likely to cause a decrease of the MDA level. Thus, our studies on the Zn?Ni interactions identified the antagonizing role of Ni in Zn toxicity by the GR-GSH system.  相似文献   

17.
The aim of this study was to examine: the 24 h variation of 6‐phosphogluconate dehydrogenase and glucose‐6‐phosphate dehydrogenase activities, key enzymes for the maintenance of intracellular NADPH concentration, in rat liver in control and streptozotocin‐induced diabetic animals. Adult male rats were fed ad libitum and synchronized on a 12:12 h light‐dark cycle (lights on 08:00 h). One group of animals was treated with streptozotocin (STZ, 55 mg/kg, intraperitoneal) to induce experimental diabetes. Eight weeks after STZ injection, the animals were sacrificed at six different times of day—1, 5, 9, 13, 17 and 21 Hours After Lights On (HALO)—and livers were obtained. Enzyme activities were determined spectrophotometrically in triplicate in liver homogenates and expressed as units per mg protein. 6‐phosphogluconate dehydrogenase activity was measured by substituting 6‐phosphogluconate as substrate. Glucose‐6‐phosphate dehydrogenase activity was determined by monitoring NADPH production. Treatment, circadian time, and interaction between treatment and circadian time factors were tested by either one or two way analysis of variance (ANOVA). Two‐way ANOVA revealed that 6‐phosphogluconate dehydrogenase activity significantly depended on both the treatment and time of sacrifice. 6‐phosphogluconate dehydrogenase activity was higher in control than diabetic animals; whereas, glucose‐6‐phosphate dehydrogenase activity did not vary over the 24 h in animals made diabetic by STZ treatment. Circadian variation in the activity of 6‐phosphogluconate dehydrogenase was also detected in both the control and STZ treatment groups (one‐way ANOVA). Time‐dependent variation in glucose‐6‐phosphate dehydrogenase activity during the 24 h was detected in control but not in diabetic rats. No significant interaction was detected between STZ‐treatment and time of sacrifice for both hepatic enzyme activities. These results suggest that the activities of NADPH‐generating enzymes exhibit 24 h variation, which is not influenced by diabetes.  相似文献   

18.
19.
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.  相似文献   

20.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号