首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The activity of pyruvate,P(i) dikinase in leaves of maize and Amaranthus palmeri rapidly falls on transferring illuminated plants to darkness. Illumination of dark-treated plants results in an immediate rapid increase in activity of the enzyme, the final activity reached being dependent on the intensity of the incident light. 2. Activation of the enzyme in extracts of dark-treated maize leaves after gel filtration on Sephadex G-25 requires a thiol and P(i). The P(i) requirement for activation can be replaced by arsenate. Activation of the enzyme is inhibited by AMP and GMP and possibly also by ADP and ATP. Activation of the enzyme after gel filtration on Sephadex G-200 also requires a heat-labile component that is excluded by Sephadex G-25. 3. The active enzyme isolated from illuminated leaves is inactivated by ADP in the presence of a thiol, the rate of inactivation being very much faster in air than in an oxygen-free atmosphere. Reactivation of the ADP-inactivated enzyme requires a thiol, P(i) and a component excluded by Sephadex G-25 but considerably retarded by Sephadex G-200. 4. The active enzyme is rapidly and irreversibly inactivated in the absence of a thiol. Inactivation is accelerated by both sodium diethyldithiocarbamate and tetraethylthiuram disulphide, and the enzyme inactivated by these reagents is completely reactivated by incubation with dithiothreitol. This reactivation does not require P(i). The inactive enzyme from dark-treated leaves is stabilized by diethyldithiocarbamate and can be partially activated by dithiothreitol alone; complete reactivation requires both dithiothreitol and P(i). 5. The enzyme activity is markedly inhibited by the thiol reagents p-chloromercuribenzoate, gamma-(p-arsenophenyl)-n-butyrate and an equimolar mixture of arsenite and 2,3-dimercaptopropan-1-ol. 6. The processes of activation and inactivation observed in vitro are discussed in relation to the regulation of pyruvate,P(i) dikinase activity in the leaf.  相似文献   

2.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

3.
Active pyruvate, P1 dikinase in leaf or chloroplast extractsisolated from illuminated leaves was inactivated by incubatingwith ADP. With chloroplast extracts neither ATP nor AMP alonewas effective. Half the maximum rate of inactivation was observedwith about 55 µM ADP. The following evidence supportedthe view that ADP-mediated inactivation had a co-requirementfor low concentrations of ATP [Buchanan (1980) Ann. Rev. PlantPhysiol. 31: 341], adding hexokinase and glucose prevented inactivationby ADP [Feldhaus et al. (1975) Eur. J. Biochem. 57: 197], whenGDP and UDP were added in place of ADP they mediated rapid inactivationonly when ATP was also provided; GTP was not effective. ATPwas apparently optimally effective at about 1 µM or less.The rate of inactivation was approximately proportional to thesquare of extract concentration suggesting dependancy on a factorin the extracts in addition to active enzyme. The involvementof one or more heat labile protein factors was confirmed bytrypsin treatment of extracts. Pyruvate, P1 dikinase inactivatedby treatment with ADP was reactivated by incubating with P1,a property common to the inactive enzyme extracted from darkenedleaves. Thiol/disulphide interconversion was apparently notcritical in the regulation of pyruvate, P1 dikinase. 3Present address: Department of Agricultural Chemistry, Facultyof Agriculture, Nagoya University, Chikusa, Nagoya 464, Japan. (Received September 22, 1980; Accepted December 6, 1980)  相似文献   

4.
Evidence is provided that the role of ATP in the ADP plus ATP-dependent inactivation of pyruvate,Pi dikinase is to catalytically phosphorylate the enzyme. Only this phosphorylated form of the enzyme is susceptible to inactivation by reacting with ADP. Phosphoenolpyruvate, which also phosphorylates pyruvate,Pi dikinase during catalysis, can replace the ATP-requirement for inactivation.  相似文献   

5.
These studies provide information about the mechanism of the light/dark-mediated regulation of pyruvate, Pi dikinase (EC 2.7.9.1) in leaves. It is shown that inactivation is due to a phosphorylation of the enzyme from the beta-phosphate of ADP, and that activation occurs by phosphorolysis to remove the enzyme phosphate group. During ADP plus ATP-dependent inactivation of pyruvate, Pi dikinase in chloroplast extracts, 32P was incorporated into the enzyme from [beta-32P]ADP. Approximately 1 mol of phosphate was incorporated per mol of monomeric enzyme subunit inactivated. There was very little incorporation of label from ADP or ATP labeled variously in other positions with 32P or from the nucleotides labeled with 3H in the purine ring. Purified pyruvate, Pi dikinase was also labeled from [beta-32P]ADP during inactivation. In this system, phosphorylation of the enzyme required the addition of the "regulatory protein" shown previously to be essential for catalyzing inactivation and activation. During orthophosphate-dependent reactivation of pyruvate, Pi dikinase, it was shown that the enzyme loses 32P label and that pyrophosphate is produced. The significance of these findings in relation to regulation of the enzyme in vivo is discussed.  相似文献   

6.
The influence of oxygen and temperature on the inactivation of pyruvate, Pi dikinase and NADP-malate dehydrogenase was studied in Zea mays. O2 was required for inactivation of both pyruvate, Pi dikinase and NADP-malate dehydrogenase in the dark in vivo. The rate of inactivation under 2% O2 was only slightly lower than that at 21% O2. The in vitro inactivation of pyruvate, Pi dikinase, while dependent on adenine nucleotides (ADP + ATP), did not require O2.

The postillumination inactivation of pyruvate, Pi dikinase in leaves was strongly dependent on temperature. As temperature was decreased in the dark, there was a lag period of increasing length (e.g. at 17°C there was a lag of about 25 minutes) before inactivation proceeded. Following the lag period, the rate of inactivation decreased with decreasing temperature. The half-time for dark inactivation was about 7 minutes at 32°C and 45 minutes at 17°C. The inactivation of pyruvate, Pi dikinase in vitro following extraction from illuminated leaves was also strongly dependent on temperature, but occurred without a lag period. In contrast, NADP-malate dehydrogenase was rapidly inactivated in leaves (half-time of approximately 3 minutes) during the postillumination period without a lag, and there was little effect of temperature between 10 and 32°C. The results are discussed in relation to known differences in the mechanism of activation/inactivation of the two enzymes.

  相似文献   

7.
The effect of adenine nucleotides in pyruvate, orthophosphate dikinase (EC 2.7.9.1, ATP, pyruvate, orthophosphate phosphotransferase)_was studied with the enzyme furified from maize, and with the enzyme obtained from mesophyll chloroplast extracts during assay in the direction of pyruvate conversion to phosphoenolpyruvate. (1) In studies with the purified enzyme, the relationship of initial velocity to ATP concentrations follows Michaelis-Menten kinetics, and the Km value for ATP was 22.8 μM (± 5.1 μM, n = 5). (2) AMP was a competitive inhibitor with respect to ATP, and its Ki value was 35.8 μM (± μM, n = 4). There was no inhibition of catalysis by ADP up to a concentration of 460 μM. (3) The theoretical response of the enzyme to change in the adenylate energy charge was calculated from the kinetic constants for ATP and AMP. The experimentally obtained values were similar to the theoretical response when varying energy charge was generated by addition of appropriate amounts of ATP, ADP and AMP in assays with the purified enzyme. The response of the enzyme to energy charge at different pH values (pH 7.0, 7.5, and 8.0) was similar, although the activity of the enzyme at pH 7.0 was about 40% of that at pH 8.0. (4) When mesophyll chloroplast extracts of maize, which contain high levels of adenylate kinase, were used as the source of the enzyme and the adenylate energy charge was generated by addition of different concentrations of ATP and AMP, the influence on catalysis was similar to that with the purified enzyme. (5) The data show that the effect of varying energy chage on the activity of the dikinase is not typical of a U-type enzyme, in contrast to phosphoglycerate kinase (EC 2.7.2.3, ATP: 3-phospho-D-glycerate 1-phosphotransferase), which is more strongly regulated. (6) Evidence is presented for competition between the dikinase and phosphoglycerate kinase for ATP in mesophyll chloroplast extracts of maize. (7) When the effect of adenylate energy charge on the state of activation and the direct effect on catalysis of the dikanase are combined, the total capacity for catalysis is very dependent on the energy charge.  相似文献   

8.
Pyruvate, Pi dikinase in extracts of chloroplasts from mesophyll cells of Zea mays is inactivated by incubation with ADP plus ATP. This inactivation was associated with phosphorylation of a threonine residue on a 100 kDa polypeptide, the major polypeptide of the mesophyll chloroplast stroma, which was identified as the subunit of pyruvate, Pi dikinase. The phosphate originated from the beta-position of ADP as indicated by the labelling of the enzyme during inactivation in the presence of [beta-32P]ADP. During inactivation of the enzyme up to 1 mole of phosphate was incorporated per mole of pyruvate, Pi dikinase subunit inactivated. 32P label was lost from the protein during the Pi-dependent reactivation of pyruvate, Pi dikinase.  相似文献   

9.
Pyruvate,Pi dikinase regulatory protein (PDRP) has been highly purified from maize leaves, and its role in catalyzing both ADP-mediated inactivation (due to phosphorylation of a threonine residue) and Pi-mediated activation (due to dephosphorylation by phosphorolysis) of pyruvate,Pi dikinase has been confirmed. These reactions account for the dark/light-mediated regulation of pyruvate,Pi dikinase observed in the leaves of C4 plants. During purification to apparent homogeneity the ratio of these two activities remained constant. The molecular weight of the native PDRP was about 180,000 at pH 8.3 and 90,000 at pH 7.5. Its monomeric molecular weight was 45,000. It was confirmed that inactive pyruvate,Pi dikinase free of a phosphate group on a catalytic histidine was the preferred substrate for activation. Michaelis constants for orthophosphate and the above form of active pyruvate,Pi dikinase were determined, as well as the mechanism of inhibition of the PDRP-catalyzed reaction by ATP, ADP, AMP, and PPi. For the inactivation reaction, Km values were 1.2 microM for the active pyruvate,Pi dikinase and 52 microM for ADP. CDP and GDP but not UDP could substitute for ADP. The inactivation reaction is inhibited by inactive pyruvate,Pi dikinase competitively with respect to both active pyruvate,Pi dikinase and ADP. Both the activation and inactivation reactions catalyzed by PDRP have a broad pH optimum between 7.8 and 8.3. The results are discussed in terms of the likely mechanism of dark/light regulation of pyruvate,Pi dikinase in vivo.  相似文献   

10.
1. In photophosphorylation with chromatophores from Rhodospirillum rubrum, evidence is presented for the synthesis of activated precursors of ATP in the energy-conversion system coupled to photosynthetic electron transport. 2. A significant amount of ATP is synthesized when a reaction mixture containing chromatophores and ADP is illuminated and then incubated with Pi in the dark. ATP is not synthesized to an appreciable extent, either when a reaction mixture containing chromatophores and Pi is illuminated and then incubated with ADP in the dark, or when one containing chromatophores alone is illuminated and then incubated with ADP and Pi in the dark. The amount of ATP thus synthesized is influenced markedly by concentrations of ADP. 3. The chromatophores illuminated with ADP, if allowed to stand in the dark at 30°, gradually lose the ability to form ATP with Pi in the dark. No loss of the ability occurs when the chromatophores illuminated with ADP are allowed to stand in the dark at 13° or in a frozen state. 4. Mg2+ is absolutely required for chromatophores to form ATP in the dark after illumination in the presence of ADP, and for the chromatophores to achieve ATP formation with Pi in the dark. 5. Antimycin A, 2-heptyl-4-hydroxyquinoline N-oxide and o-phenanthroline strongly inhibit the light-dependent acquisition of the ability to form ATP with Pi in the dark, but not the consequent ATP formation with Pi in the dark. Arsenate, 2,4-dinitrophenol, quinacrine hydrochloride, quinine hydrochloride and pyrophosphate inhibit the former or the latter, or both. Oligomycin inhibits the former somewhat more than the latter. 6. From these findings it is suggested that a high-energy intermediate is formed in photosynthetic ATP formation, and that its formation is dependent on ADP but not Pi.  相似文献   

11.
The leaf NADP-malate dehydrogenase of Zea mays is rapidly activated when leaves are illuminated and inactivated in the dark. The present studies show that inactive enzyme isolated from darkened leaves was activated by dithiothreitol and that the active enzyme was rapidly inactivated by oxygen in dithiothreitol-free solutions. Following the fractionation of leaf extracts, both the activation and inactivation of NADP-malate dehydrogenase in vitro were partially or totally dependent upon a separate small molecular weight protein factor. Activation and inactivation were largely or solely dependent upon this factor at pH 8.0 or less, but apparently only partially factor dependent at pH 9.0. The factor was heat stable, inactivated by incubation with trypsin, and had a molecular weight of about 10,000. It was mostly associated with the chloroplasts of mesophyll cells.  相似文献   

12.
《BBA》1987,893(2):275-288
The membrane-bound ATP synthase from chloroplasts can occur in different redox and activation states. In the absence of reductants the enzyme usually is oxidized and inactive, Eoxi. Illumination in the presence of dithiothreitol leads to an active, reduced enzyme, Ereda. If this form is stored in the dark in the presence of dithiothreitol an inactive, reduced enzyme Eredi is formed. The rates of ATP synthesis and ATP hydrolysis catalyzed by the different enzyme species are measured as a function of ΔpH (Δψ = 0 mV). The ΔpH was generated with an acid-base transition using a rapid-mixing quenched flow apparatus. The following results were obtained. (1) The oxidized ATP synthase catalyzes high rates of ATP synthesis, voxmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 3.4. (2) The active, reduced ATP synthase catalyzes high rates of ATP synthesis, vredmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 2.7. It catalyzes also high rates of ATP hydrolysis vredmax = −90 ATP per CF0F per s at ΔpH = 0. (3) The inactive species (both oxidized and reduced) catalyze neither ATP synthesis nor ATP hydrolysis. The activation/inactivation of the reduced enzyme is completely reversible. (4) The activation of the reduced, inactive enzyme is measured as a function of ΔpH by measuring the rate of ATP hydrolysis catalyzed by the active species. Half-maximal activation is observed at ΔpH = 2.2. (5) On the basis of these results a reaction scheme is proposed relating the redox reaction, the activation and the catalytic reaction of the chloroplast ATP synthase.  相似文献   

13.
《Bioorganic chemistry》1986,14(2):163-169
The inhibition of Escherichia coli glutamine synthetase by phosphinothricin [2-amino-4-(methylphosphinyl)butanoic acid] has been studied. This amino acid was observed to function as an active site directed inhibitor exhibiting time-dependent inhibition of glutamine synthetase in the presence of ATP or adenylylimidodiphosphate (AMPPNP) but not adenylyl(β,γ-methylene) diphosphonate (AMPPCP). The inactivation was observed to be pseudo-first order. Phosphinothricin was also found to inhibit the enzyme reversibly under initial rate conditions and was competitive with respect to glutamate with K1S = 18 ± 3 μm. The inactive enzyme inhibitor complex was found to contain approximately 11 molecules of ADP and of 32P per dodecamer using [γ-32P]ATP. Reactivation of the inactive enzyme complex was achieved by incubating the enzyme complex in 50 mm acetate (pH 4.4), 1 m KCl, and 0.40 m (NH4)2SO4. ADP, phosphinothricin, and Pi were released upon reactivation.  相似文献   

14.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

15.
To elucidate the mechanism of light-activation of pyruvate PL dikinase in maize leaf, the inactive form was purified to homogeneity from dark-treated leaves using an activation system to locate it. The purification procedure included ammonium sulfate-fractionation followed by conventional chromatography.

The homogeneous enzyme after maximal activation had a specific activity comparable to that of the active enzyme obtained from non-dark-treated plants. The enzyme was indistinguishable from the active one in its molecular size and charge and in the amino acid composition of its acid-hydrolysate.  相似文献   

16.
The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect.The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 mm) and V (3.2) of the native enzyme increased on renaturation to 1.8 mm and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.  相似文献   

17.
Summary The mechanism of activation by inorganic phosphate and ATP of cardiac muscle pyruvate kinase was studied with the aid of steady-state kinetics. The enzyme was purified to homogeneity to a final specific activity of 400 units/ mg (phosphate buffer, pH 7.6, 25 °C). At pH 7.6 the enzyme displays Michaelis-Menten kinetics with respect to both its substrates, phosphoenolpyruvate and ADP. Substrate kinetic constants are: app.Km(phosphoenolpyruvate) –0.04 mM, app.Km(ADP) =0.22 mM. Under the conditions used in the standard assay the specific activity is greatly enhanced by inorganic phosphate (50 mM) or ATP (2.5 mM). Each of these modifiers, acting separately, increases the Vmax without seriously affecting Michaelis constants and Hill coefficients. In the presence of both Pi and ATP, only a decrease in Vmax was observed.The kinetics of activation by inorganic phosphate of pyruvate kinase was examined. Studying the effect of varying concentrations of Pi on the initial rate we obtained a hyperbolic saturation curve with the app. Km(Pi) = 20 mM and Vmax = 167 units/ mg. The evidence is presented that inorganic phosphate is a substrate for a side reaction catalyzed by cardiac pyruvate kinase. It is shown that in the presence of pyruvate, inorganic phosphate and ATP in the assay system, Pi is incorporated into acid-labile products of this reaction, inorganic pyrophosphate being one of them.These findings indicate the existence of an alternative reaction catalyzed by pyruvate kinase by which energy may be stored in the form of inorganic pyrophosphate.Abbreviations PEP phosphoenolpyruvate - Pi inorganic phosphate - TEA triethanolamine - EDTA ethylenediaminetetraacetate  相似文献   

18.
In vitro phosphorylation of maize leaf phosphoenolpyruvate carboxylase   总被引:3,自引:2,他引:1  
Budde RJ  Chollet R 《Plant physiology》1986,82(4):1107-1114
Autoradiography of total soluble maize (Zea mays) leaf proteins incubated with 32P-labeled adenylates and separated by denaturing electrophoresis revealed that many polypeptides were phosphorylated in vitro by endogenous protein kinase(s). The most intense band was at 94 to 100 kilodaltons and was observed when using either [γ-32P]ATP or [β-32P]ADP as the phosphate donor. This band was comprised of the subunits of both pyruvate, Pi dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPCase). PPDK activity was previously shown to be dark/light-regulated via a novel ADP-dependent phosphorylation/Pi-dependent dephosphorylation of a threonyl residue. The identity of the acid-stable 94 to 100 kilodalton band phosphorylated by ATP was established unequivocally as PEPCase by two-dimensional gel electrophoresis and immunoblotting. The phosphorylated amino acid was a serine residue, as determined by two-dimensional thin-layer electrophoresis. While the in vitro phosphorylation of PEPCase from illuminated maize leaves by an endogenous protein kinase resulted in a partial inactivation (~25%) of the enzyme when assayed at pH 7 and subsaturating levels of PEP, effector modulation by l-malate and glucose-6-phosphate was relatively unaffected. Changes in the aggregation state of maize PEPCase (homotetrameric native structure) were studied by nondenaturing electrophoresis and immunoblotting. Enzyme from leaves of illuminated plants dissociated upon dilution, whereas the protein from darkened tissue did not dissociate, thus indicating a physical difference between the enzyme from light- versus dark-adapted maize plants.  相似文献   

19.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

20.
《BBA》2006,1757(5-6):304-310
Fo·F1-ATP synthase in inside-out coupled vesicles derived from Paracoccus denitrificans catalyzes Pi-dependent proton-translocating ATPase reaction if exposed to prior energization that relieves ADP·Mg2+-induced inhibition (Zharova, T.V. and Vinogradov, A.D. (2004) J. Biol. Chem.,279, 12319–12324). Here we present evidence that the presence of medium ADP is required for the steady-state energetically self-sustained coupled ATP hydrolysis. The initial rapid ATPase activity is declined to a certain level if the reaction proceeds in the presence of the ADP-consuming, ATP-regenerating system (pyruvate kinase/phosphoenol pyruvate). The rate and extent of the enzyme de-activation are inversely proportional to the steady-state ADP concentration, which is altered by various amounts of pyruvate kinase at constant ATPase level. The half-maximal rate of stationary ATP hydrolysis is reached at an ADP concentration of 8 × 10−6 M. The kinetic scheme is proposed explaining the requirement of the reaction products (ADP and Pi), the substrates of ATP synthesis, in the medium for proton-translocating ATP hydrolysis by P. denitrificans Fo·F1-ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号