首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
启动子识别是研究基因转录调控的重要环节,但目前方法的识别正确率偏低。在深入分析原核启动子特征的基础上,提出了一种基于特征筛选的原核启动子判别分析方法,首先在启动子序列的组成特征、信号特征和结构特征中选取备选特征,为每个特征建立适当的描述模型,并对主要的保守模式采用复合模式模型;再通过模型计算对备选特征进行逐步筛选,优化特征集,将序列表示为组合特征向量;最终利用二次判别分析实现识别。对大肠杆菌和枯草杆菌实际启动子数据进行的刀切法测试验证了方法的有效性和通用性。对于大肠杆菌非编码区(70启动子,识别的平均正确率达到了85.8%,优于其它几种典型识别方法;对于大肠杆菌编码区内部)70启动子和其它几种原核启动子,平均正确率也都超过了80%。方法框架还具有良好的可扩展性,能够方便地容纳新特征,使识别性能不断提高。  相似文献   

2.
The prediction of the secondary structure of a protein from its amino acid sequence is an important step towards the prediction of its three-dimensional structure. However, the accuracy of ab initio secondary structure prediction from sequence is about 80 % currently, which is still far from satisfactory. In this study, we proposed a novel method that uses binomial distribution to optimize tetrapeptide structural words and increment of diversity with quadratic discriminant to perform prediction for protein three-state secondary structure. A benchmark dataset including 2,640 proteins with sequence identity of less than 25 % was used to train and test the proposed method. The results indicate that overall accuracy of 87.8 % was achieved in secondary structure prediction by using ten-fold cross-validation. Moreover, the accuracy of predicted secondary structures ranges from 84 to 89 % at the level of residue. These results suggest that the feature selection technique can detect the optimized tetrapeptide structural words which affect the accuracy of predicted secondary structures.  相似文献   

3.
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.  相似文献   

4.
5.
张亮  屈景辉 《人类学学报》2008,27(4):364-368
本文提出一组定量描述掌纹屈肌线纹型的特征向量,以描述和区分传统皮纹学中定义的6种掌纹屈肌线纹型。用该特征向量对151例(302只手掌掌纹)样本的6种屈肌线纹型进行了描述,并用Fisher判别分析进行了多类判别。结果发现,6种屈肌线纹型的分类判别正确率达到96.0%,其中桥贯型、悉尼型、通贯型、叉贯型的分类正确率为100%。为检验判别效果,用"刀切法"原则进行了回代交叉核实,验证后的正确率亦为96.0%,验证效果较好。结论认为,所采用的特征向量与相应的判别方法结合,能描述并区分不同的屈肌线纹型,并可得到较高分类正确率。  相似文献   

6.

Background

Among the primary goals of microarray analysis is the identification of genes that could distinguish between different phenotypes (feature selection). Previous studies indicate that incorporating prior information of the genes'' function could help identify physiologically relevant features. However, current methods that incorporate prior functional information do not provide a relative estimate of the effect of different genes on the biological processes of interest.

Results

Here, we present a method that integrates gene ontology (GO) information and expression data using Bayesian regression mixture models to perform unsupervised clustering of the samples and identify physiologically relevant discriminating features. As a model application, the method was applied to identify the genes that play a role in the cytotoxic responses of human hepatoblastoma cell line (HepG2) to saturated fatty acid (SFA) and tumor necrosis factor (TNF)-α, as compared to the non-toxic response to the unsaturated FFAs (UFA) and TNF-α. Incorporation of prior knowledge led to a better discrimination of the toxic phenotypes from the others. The model identified roles of lysosomal ATPases and adenylate cyclase (AC9) in the toxicity of palmitate. To validate the role of AC in palmitate-treated cells, we measured the intracellular levels of cyclic AMP (cAMP). The cAMP levels were found to be significantly reduced by palmitate treatment and not by the other FFAs, in accordance with the model selection of AC9.

Conclusions

A framework is presented that incorporates prior ontology information, which helped to (a) perform unsupervised clustering of the phenotypes, and (b) identify the genes relevant to each cluster of phenotypes. We demonstrate the proposed framework by applying it to identify physiologically-relevant feature genes that conferred differential toxicity to saturated vs. unsaturated FFAs. The framework can be applied to other problems to efficiently integrate ontology information and expression data in order to identify feature genes.  相似文献   

7.
8.
Man Jin  Yixin Fang 《Biometrics》2011,67(1):124-132
Summary In family studies, canonical discriminant analysis can be used to find linear combinations of phenotypes that exhibit high ratios of between‐family to within‐family variabilities. But with large numbers of phenotypes, canonical discriminant analysis may overfit. To estimate the predicted ratios associated with the coefficients obtained from canonical discriminant analysis, two methods are developed; one is based on bias correction and the other based on cross‐validation. Because the cross‐validation is computationally intensive, an approximation to the cross‐validation is also developed. Furthermore, these methods can be applied to perform variable selection in canonical discriminant analysis. The proposed methods are illustrated with simulation studies and applications to two real examples.  相似文献   

9.
The amount of metagenomic data is growing rapidly while the computational methods for metagenome analysis are still in their infancy. It is important to develop novel statistical learning tools for the prediction of associations between bacterial communities and disease phenotypes and for the detection of differentially abundant features. In this study, we presented a novel statistical learning method for simultaneous association prediction and feature selection with metagenomic samples from two or multiple treatment populations on the basis of count data. We developed a linear programming based support vector machine with and joint penalties for binary and multiclass classifications with metagenomic count data (metalinprog). We evaluated the performance of our method on several real and simulation datasets. The proposed method can simultaneously identify features and predict classes with the metagenomic count data.  相似文献   

10.
The paper deals with the optimal Bayes discriminant rule for qualitative variables. The performance of variable selection is investigated under strong assumptions like the restriction to dichotomous variables, which are assumed to be independent or dependent with fixed dependence structure, and all parameters known. Differences in comparison with normal variables in linear discriminant analysis can be shown. This is a further reason for applying special methods of discriminant analysis in the case of qualitative variables.  相似文献   

11.
A robust method of selecting variables with the greatest discriminatory power is presented in the paper. It is based on the robustified Wilks A statistic and can be applied in a multi-group discrimination problem. An application to some respiratory disease data together with a comparison of the classical procedure is also given.  相似文献   

12.
Optimal classification rules based on linear functions which maximize the Chernoff distance, or the Morisita distance, or the Kullback-Leibler distance are studied here. We obtain an expression for the optimal linear discriminant function and show that the resulting linear procedure belongs to the Anderson-Bahadur admissible class. For the comparison of discriminant rules we use some index which is the measure of the accuracy of a given class of discriminant procedures. The asymptotic form of the discriminant function is also studied.  相似文献   

13.
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer''s disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer''s Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.  相似文献   

14.
A discriminant analysis method for frequency data for hybridization based on weighted multivariate analysis of variance is given for allotting an individual to one of groups.  相似文献   

15.
The discovery and characterization of blood-based disease biomarkers are clinically important because blood collection is easy and involves relatively little stress for the patient. However, blood generally reflects not only targeted diseases, but also the whole body status of patients. Thus, the selection of biomarkers may be difficult. In this study, we considered miRNAs as biomarker candidates for several reasons. First, since miRNAs were discovered relatively recently, they have not yet been tested extensively. Second, since the number of miRNAs is relatively limited, selection is expected to be easy. Third, since they are known to play critical roles in a wide range of biological processes, their expression may be disease specific. We applied a newly proposed method to select combinations of miRNAs that discriminate between healthy controls and each of 14 diseases that include 5 cancers. A new feature selection method is based on principal component analysis. Namely this method does not require knowledge of whether each sample was derived from a disease patient or a healthy control. Using this method, we found that hsa-miR-425, hsa-miR-15b, hsa-miR-185, hsa-miR-92a, hsa-miR-140-3p, hsa-miR-320a, hsa-miR-486-5p, hsa-miR-16, hsa-miR-191, hsa-miR-106b, hsa-miR-19b, and hsa-miR-30d were potential biomarkers; combinations of 10 of these miRNAs allowed us to discriminate each disease included in this study from healthy controls. These 12 miRNAs are significantly up- or downregulated in most cancers and other diseases, albeit in a cancer- or disease-specific combinatory manner. Therefore, these 12 miRNAs were also previously reported to be cancer- and disease-related miRNAs. Many disease-specific KEGG pathways were also significantly enriched by target genes of up−/downregulated miRNAs within several combinations of 10 miRNAs among these 12 miRNAs. We also selected miRNAs that could discriminate one disease from another or from healthy controls. These miRNAs were found to be largely overlapped with miRNAs that discriminate each disease from healthy controls.  相似文献   

16.
The application of discriminant analysis like other multivariate procedures is essentially complicated with incomplete data. Therefore several methods for handling missing observations occuring in initial samples were compared with each other. Recommendations are given for selecting a suitable method depending on underlying parameters.  相似文献   

17.
18.

Background

Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual’s breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used.

Contributions

In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value.

Results

We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.  相似文献   

19.
20.
Encoding and decoding in functional magnetic resonance imaging has recently emerged as an area of research to noninvasively characterize the relationship between stimulus features and human brain activity. To overcome the challenge of formalizing what stimulus features should modulate single voxel responses, we introduce a general approach for making directly testable predictions of single voxel responses to statistically adapted representations of ecologically valid stimuli. These representations are learned from unlabeled data without supervision. Our approach is validated using a parsimonious computational model of (i) how early visual cortical representations are adapted to statistical regularities in natural images and (ii) how populations of these representations are pooled by single voxels. This computational model is used to predict single voxel responses to natural images and identify natural images from stimulus-evoked multiple voxel responses. We show that statistically adapted low-level sparse and invariant representations of natural images better span the space of early visual cortical representations and can be more effectively exploited in stimulus identification than hand-designed Gabor wavelets. Our results demonstrate the potential of our approach to better probe unknown cortical representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号