共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiong B Li S Ai JS Yin S Ouyang YC Sun SC Chen DY Sun QY 《Biology of reproduction》2008,79(4):718-726
BRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage. Immunofluorescent analysis showed that BRCA1 was localized to the spindle poles at metaphase I and metaphase II stages, colocalizing with centrosomal protein gamma-tubulin. Taxol treatment resulted in the presence of BRCA1 onto the spindle microtubule fibers, whereas nocodazole treatment induced the localization of BRCA1 onto the chromosomes. Depletion of BRCA1 by both antibody injection and siRNA injection caused severely impaired spindles and misaligned chromosomes. Furthermore, BRCA1-depleted oocytes could not arrest at the metaphase I in the presence of low-dose nocodazole, suggesting that the spindle checkpoint is defective. Also, in BRCA1-depleted oocytes, gamma-tubulin dissociated from spindle poles and MAD2L1 failed to rebind to the kinetochores when exposed to nocodazole at metaphase I stage. Collectively, these data indicate that BRCA1 regulates not only meiotic spindle assembly, but also spindle assembly checkpoint, implying a link between BRCA1 deficiency and aneuploid embryos. 相似文献
2.
Reversal of postmortem degeneration of mouse oocytes during meiotic maturation in vitro 总被引:3,自引:0,他引:3
The developmental capacity of oocytes matured in vitro following isolation at the germinal vesicle stage from freshly killed mice (control) was compared with that of oocytes isolated from the carcasses of mice killed 3, 6, 9, and 12 hr earlier. The yield of intact, cumulus cell-enclosed oocytes decreased as the interval between death of the animal and removal of the ovary increased. After 15-16 hr of culture of medium containing follicle-stimulating hormone, the frequency of germinal vesicle breakdown, extrusion of a polar body, and cumulus expansion was equivalent in oocytes of all groups. The frequency of development of inseminated ova to 2-cell stage embryos in the control, 3, and 6 hr postmortem groups was the same but declined markedly in the 9 and 12 hr groups. There was also no difference in the frequency of blastocyst development from 2-cell stage embryos between the control, 3, 6, and 9 hr postmortem groups, but the 2-cell embryos in the 12 hr postmortem group did not develop to blastocysts. Thirty-six percent of the 2-cell stage embryos from the 6 hr postmortem group developed to live young after transfer to foster mothers. Follicles of 6 hr postmortem ovaries showed degeneration manifested as prominent crystalline inclusions within the oocytes and many pyknotic granulosa cells. The crystals disappeared within 1 hr of culture and the secondary oocytes appeared normal. The cultured oocyte-cumulus cell complexes, therefore, reversed degenerative changes induced by the death of the animal. This study demonstrates the feasibility of recovering developmentally competent oocytes from valuable recently deceased zoological, agricultural, and endangered mammals. 相似文献
3.
The objective was to evaluate mitochondrial distribution, and its relationship to meiotic development, in canine oocytes during in vitro maturation (IVM) at 48, 72, and 96 h, compared to those that were non-matured or in vivo matured (ovulated). The distribution of active mitochondria during canine oocyte maturation (both in vitro and in vivo) was assessed with fluorescence and confocal microscopy using MitoTracker Red (MT-Red), whereas chromatin configuration was concurrently evaluated with fluorescence microscopy and DAPI staining. During IVM, oocytes exhibited changes in mitochondrial organization, ranging from a fine uniform distribution (pattern A), to increasing clustering spread throughout the cytoplasm (pattern B), and to a more perinuclear and cortical distribution (pattern C). Pattern A was mainly observed in germinal vesicle (GV) oocytes (96.4%), primarily in the non-matured group (P < 0.05). Pattern B was seen in all ovulated oocytes which were fully in second metaphase (MII), whereas in IVM oocytes, ∼64% were pattern B, irrespective of duration of culture or stage of nuclear development (P > 0.05). Pattern C was detected in a minor percentage (P < 0.05) of oocytes (mainly those in first metaphase, MI) cultured for 72 or 96 h. In vitro matured oocytes had a minor percentage of pattern B (P < 0.05) and smaller mitochondrial clusters in IVM oocytes than ovulated oocytes, reaching only 4, 11, and 17% of MII at 48, 72, and 96 h, respectively. Thus, although IVM canine oocytes rearranged mitochondria, which could be related to nuclear maturation, they did not consistently proceed to MII, perhaps due to incomplete IVM, confirming that oocytes matured in vitro were less likely to be competent than those matured in vivo. 相似文献
4.
Janet E. Holt Simon I. R. Lane Phoebe Jennings Irene García-Higuera Sergio Moreno Keith T. Jones 《Molecular biology of the cell》2012,23(20):3970-3981
FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ∼1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APCCDC20 activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APCCDC20 activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction. 相似文献
5.
Su YQ Sugiura K Woo Y Wigglesworth K Kamdar S Affourtit J Eppig JJ 《Developmental biology》2007,302(1):104-117
6.
The aim of this confocal microscopy study was to determine whether the pattern of CellTracker Green 5-chloromethylfluorescein diacetate (CMFDA) staining changes during meiotic maturation and fertilization in vitro of mouse oocytes. At different times during meiotic maturation and fertilization, oocytes, zygotes and two-cell embryos were stained with CMFDA to demonstrate intracellular glutathione S-transferase activity. After washing in CMFDA-free medium, most oocytes, zygotes and embryos were stained with dihydroethidium (HE) to visualize DNA structures. Meiotic maturation and fertilization in vitro of mouse oocytes were associated with changes in the pattern of intracellular CMFDA staining. In particular, accumulations of CMFDA-positive membranes were observed around the nucleus of germinal vesicle (GV) oocytes, overlaying the sperm nucleus as well as overlaying the first mitotic spindle if this approached the plasma membrane. Staining of oocytes and zygotes with the probes 3,3'-dihexyloxacarbocyanine iodine [DiOC6(3)], which stains all the intracellular membranes, and rhodamine 123, which stains active mitochondria, demonstrated that the intracellular structures evidenced by CMFDA staining did not correspond to accumulations of mitochondria. Exposure of oocytes and zygotes to the microtubule-disrupting agent nocodazole or the actin-depolymerizing drug cytochalasin D revealed an autonomous microfilament-dependent transport and relocation of CMFDA-positive membranes during meiotic maturation and fertilization. Such a transport of CMFDA-positive membranes may be envisaged as a protective shield built to prevent damage to DNA from endogenous and exogenous mutagen metabolites. 相似文献
7.
8.
Stephen M. Downs Peter G. Humpherson Karen L. Martin Henry J. Leese 《Molecular reproduction and development》1996,44(1):121-131
Earlier work from this laboratory has determined that glucose plays an important role in the mechanisms regulating meiotic maturation in mammalian oocytes. In the current study, we have further explored the role of glucose in hormone-induced germinal vesicle breakdown (GVB) in an effort to better understand how glucose utilization and metabolism relate to the control of meiotic maturation in mouse cumulus cell-enclosed oocytes (CEO). When CEO were cultured in medium containing 4 mM hypoxanthine (to maintain meiotic arrest), 5.5 mM glucose, and 0.23 mM pyruvate, follicle-stimulating hormone (FSH) stimulated lactate accumulation in a time-dependent manner. Addition of 2-deoxyglucose (2-DG) to the medium at various times after the initiation of culture resulted in rapid termination of lactate production and suppression of FSH-induced GVB scored after 18 hr of culture, the effectiveness diminishing the longer the delay before addition of 2-DG. By 8 hr, addition of 2-DG was without effect on GVB. Similar effects were seen when FSH-treated CEO were washed free of glucose. In a 2-DG dose-response experiment, gonadotropin-induced lactate production was prevented, but this inhibition did not necessarily prevent GVB. The activities of six metabolic enzymes were measured in extracts of freshly isolated complexes, and in order of increasing activity were: hexokinase, 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, phosphofructokinase, lactate dehydrogenase, and pyruvate kinase. Of the six enzymes examined, only hexokinase activity was increased in CEO exposed to FSH. CEO were cultured in microdrops in the presence or absence of FSH, and aliquots from the same microdrop were assayed for glucose, lactate, and pyruvate. In response to FSH, utilization of glucose in microdrop cultures by CEO was markedly increased and was accompanied by comparable lactate production and limited pyruvate production. Cycloheximide and α-amanitin both blocked FSH-induced oocyte maturation, but only cycloheximide prevented the increase in hexokinase activity and glucose consumption. These data suggest that hexokinase is an important rate-limiting enzyme for glucose utilization that is under translational control and participates in the mechanisms controlling the reinitiation of meiosis. However, stimulation of glycolytic activity does not appear to be a necessary concomitant for meiotic induction. © 1996 Wiley-Liss, Inc. 相似文献
9.
A master regulator of DNA replication, CDC6 also functions in the DNA-replication checkpoint by preventing DNA rereplication. Cyclin-dependent kinases (CDKs) regulate the amount and localization of CDC6 throughout the cell cycle; CDC6 phosphorylation after DNA replication initiation leads to its proteolysis in yeast or translocation to the cytoplasm in mammals. Overexpression of CDC6 during the late S phase prevents entry into the M phase by activating CHEK1 kinase that then inactivates CDK1/cyclin B, which is essential for the G2/M-phase transition. We analyzed the role of CDC6 during resumption of meiosis in mouse oocytes, which are arrested in the first meiotic prophase with low CDK1/cyclin B activity; this is similar to somatic cells at the G2/M-phase border. Overexpression of CDC6 in mouse oocytes does not prevent resumption of meiosis. The RNA interference-mediated knockdown of CDC6, however, reveals a new and unexpected function for CDC6; namely, it is essential for spindle formation in mouse oocytes. 相似文献
10.
The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes 总被引:1,自引:0,他引:1
Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so. 相似文献
11.
Yadushyla Narasimhachar Daniel R Webster David L Gard Martine Coué 《Cell cycle (Georgetown, Tex.)》2012,11(3):524-531
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD) and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects, including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.Key words: Cdc6, spindle assembly, Xenopus, oocytes, pre-RC proteins 相似文献
12.
Effects of hyperthermia on maturing oocytes of a random-bred stock of mice were investigated to determine if those effects might in part be responsible for the decreased reproductive efficiency observed in animals during periods of high ambient temperatures. Oocytes were collected from virgin mice following synchronization of ovulation with Pregnant Mare Serum Gonadotropin (PMSG) and Human Chorionic Gonadotropin (HCG). Stressed animals were exposed to hyperthermic conditions (35 ± 1 °C, 65 ± 3% relative humidity (RH)) immediately following the injection of HCG until the time of oocyte recovery. Prior to heat exposure all animals were maintained at control conditions of 21 ± 2 °C and 65 ± 5% RH. Meiotic maturation was disrupted in a significant proportion (>25%) of oocytes from stressed animals. Apparent disruption of the spindle mechanism resulted in the cessation of the meiotic process at metaphase I in 12.28% of the oocytes from heat-stressed mice with 4.87% oocytes exhibiting subnucalei. Other nuclear forms presumed to be non-viable occurred in an additional 8.58% of the oocytes. Two oocytes exhibited retained polar body chromatin and several oocytes at metaphase II exhibited atypical configuration. The remaining oocytes were in normal metaphase II configuration. 相似文献
13.
《Cell cycle (Georgetown, Tex.)》2013,12(3):524-531
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor. 相似文献
14.
Attempts to cryopreserve bovine oocytes result in low survival because of their sensitivity to temperatures near 0 degrees C. This study evaluates the effects of chilling germinal vesicle-stage (GV) oocytes on their formation of microtubules and the meiotic spindle. In experiment 1, five groups of GV-stage oocytes, each consisting of approximately 90 oocytes, were held at 39 degrees C as controls, or at 31 degrees C, or cooled to 24, 4 or 0 degrees C for 10 min. After being treated, all oocytes were cultured at 39 degrees C for 24 hr. Compared to the controls, holding oocytes for 10 min at 31 or 24 degrees C did not significantly alter the formation of normal spindles, but chilling them to 4 or 0 degrees C did. After 24 hr of maturation, the respective percentages of oocytes containing normal meiotic spindles observed in the controls or those held at 31 or 24 degrees C were 69.8%, 71.9%, or 69.4% (P > 0.05). In contrast, the percentages of oocytes with normal spindles after they had been cooled to 4 or 0 degrees C were 44.0% or 29.1%, respectively. In experiment 2, approximately 90 oocytes/group were cooled to 4 degrees C for various times before being warmed and cultured. Regardless of the time of exposure, cooling oocytes to 4 degrees C reduced the formation of normal spindles. The percentages of oocytes cooled to 4 degrees C for 10, 20, 30, 45, or 60 min with normal spindles were 44.0%, 38.4%, 37.5%, 34.5% and 30.9%, respectively. In experiment 3, approximately 60 oocytes per group that had been held at 31 degrees C or cooled to 24, 4 or 0 degrees C for 10 min were allowed to mature for 24 hr before being subjected to in vitro fertilization. The cleavage rates of oocytes subjected to various chilling treatments exhibited the same pattern as that of oocytes with normal spindles. That is, there were no significant differences in cleavage rates among the control oocytes and those held at 31 or 24 degrees C (70.4%, 71.8%, and 72.4%; P > 0.05). However, only 37. 0% and 30.4% of oocytes chilled to 4 or 0 degrees C cleaved after fertilization. These results suggest that: (1) chilling bovine oocytes no lower than 24 degrees C does not reduce formation of normal meiotic spindles; (2) however, chilling oocytes to 4 degrees C or lower for as little as 10 min drastically reduces the formation of normal meiotic spindles and of fertilization; (3) the rates of fertilization and cleavage of resultant zygotes mimic that of formation of normal spindles. 相似文献
15.
Isma Bennabi Isabelle Quéguiner Agnieszka Kolano Thomas Boudier Philippe Mailly Marie‐Hélène Verlhac Marie‐Emilie Terret 《EMBO reports》2018,19(2):368-381
Mitotic spindles assemble from two centrosomes, which are major microtubule‐organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an “inside‐out” mechanism, ending with establishment of the poles. We used HSET (kinesin‐14) as a tool to shift meiotic spindle assembly toward a mitotic “outside‐in” mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic‐like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique “inside‐out” mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes. 相似文献
16.
The completion of meiosis requires the spatial and temporal coordination of cytokinesis and karyokinesis. During meiotic maturation, many events, such as formation, location, and rotation of the meiotic spindle as well as chromosomal movement, polar body extrusion, and pronuclear migration, are dependent on regulation of the cytoskeleton system. To study functions of microfilaments in meiosis, we induced metaphase II (MII) mouse oocytes to resume meiosis by in vitro fertilization or parthenogenetic activation, and we treated such oocytes with cytochalasin B (CB). The changes of the meiotic spindle, as visualized in preparations stained for beta-tubulin and chromatin, were observed by fluorescent confocal microscopy. The meiotic spindle of MII oocytes was observed to be parallel to the plasmalemma. After meiosis had resumed, the spindle rotated to the vertical position so that the second polar body could be extruded into the perivitelline space. When meiosis resumed and oocytes were treated with 10 micro g/ml of CB, the spindle rotation was inhibited. Consequently, the oocyte formed an extra pronucleus instead of extruding a second polar body. These results indicate that spindle rotation is essential for polar body extrusion; it is the microfilaments that play a crucial role in regulating rotation of the meiotic spindle. 相似文献
17.
D L Gard 《Developmental biology》1992,151(2):516-530
Assembly of the meiotic spindles during progesterone-induced maturation of Xenopus oocytes was examined by confocal fluorescence microscopy using anti-tubulin antibodies and by time-lapse confocal microscopy of living oocytes microinjected with fluorescent tubulin. Assembly of a transient microtubule array from a disk-shaped MTOC was observed soon after germinal vesicle breakdown. This MTOC-TMA complex rapidly migrated toward the animal pole, in association with the condensing meiotic chromosomes. Four common stages were observed during the assembly of both M1 and M2 spindles: (1) formation of a compact aggregate of microtubules and chromosomes; (2) reorganization of this aggregate resulting in formation of a short bipolar spindle; (3) an anaphase-B-like elongation of the prometaphase spindle, transversely oriented with respect to the oocyte A-V axis; and (4) rotation of the spindle into alignment with the oocyte axis. The rate of spindle elongation observed in M1 (0.7 microns min-1) was slower than that observed in M2 (1.8 microns min-1). Examination of spindles by immunofluorescence with antitubulin revealed numerous interdigitating microtubules, suggesting that prometaphase elongation of meiotic spindles in Xenopus oocytes results from active sliding of antiparallel microtubules. A substantial number of maturing oocytes formed monopolar microtubule asters during M1, nucleated by hollow spherical MTOCs. These monasters were subsequently observed to develop into bipolar M1 spindles and proceed through meiosis. The results presented define a complex pathway for assembly and rotation of the meiotic spindles during maturation of Xenopus oocytes. 相似文献
18.
After a 60 min heat-shock at 36 degrees C, Xenopus oocytes are still able to accomplish a complete meiotic maturation in response to a progesterone treatment. The 36 degrees C heat-shock applied to maturing oocytes strongly enhances the synthesis of a single heat-shock protein of approx. 70 000 molecular weight (hsp70); after activation with the Ca2+-ionophore A 23187, matured oocytes still display the ability to synthesize hsp70 and to survive a heat-shock. A cycloheximide treatment combined with a heat-shock induces, during the recovery period, the synthesis of two heat-shock proteins, of approx. 70 000 and 83 000 molecular weight. 相似文献
19.
Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes 总被引:8,自引:0,他引:8
Chromosome segregation in mammalian oocytes is driven by a microtubule spindle lacking centrosomes. Here, we analyze centrosome-independent spindle assembly by quantitative high-resolution confocal imaging in live maturing mouse oocytes. We show that spindle assembly proceeds by the self-organization of over 80 microtubule organizing centers (MTOCs) that form de novo from a cytoplasmic microtubule network in prophase and that functionally replace centrosomes. Initially distributed throughout the ooplasm, MTOCs congress at the center of the oocyte, where they contribute to a massive, Ran-dependent increase of the number of microtubules after nuclear envelope breakdown and to the individualization of clustered chromosomes. Through progressive MTOC clustering and activation of kinesin-5, the multipolar MTOC aggregate self-organizes into a bipolar intermediate, which then elongates and thereby establishes chromosome biorientation. Finally, a stable barrel-shaped acentrosomal metaphase spindle with oscillating chromosomes and astral-like microtubules forms that surprisingly exhibits key properties of a centrosomal spindle. 相似文献
20.
Metabolic, fluorescent dye and electrical coupling between hamster oocytes and cumulus cells during meiotic maturation in vivo and in vitro 总被引:1,自引:0,他引:1
Heterologous intercellular communication was determined qualitatively by lucifer yellow dye transfer and quantitatively by transfer of radiolabeled uridine metabolites and electrical current in hamster oocyte-cumulus complexes during meiotic maturation in vitro and in vivo. In addition, changes in cell resting potentials during maturation were recorded. Significantly less time was required for germinal vesicle breakdown (GVBD) in oocytes matured in vitro than in oocytes stimulated in vivo (1.81 +/- 0.06 hr, N = 13 vs 2.46 +/- 0.07 hr, N = 18, respectively, P less than 0.001). Resting potentials of the oocyte (RP-o) and cumulus cells (RP-c) significantly increased contemporaneously with GVBD in vitro (RP-o: from -18.9 +/- 3.2 mV to -33.2 +/- 2.9 mV, P less than 0.001; RP-c: from -16.3 +/- 1.9 mV to -27.5 +/- 2.6 mV, P less than 0.001) and in vivo after hCG injection (RP-o: from -16.8 +/- 5.9 mV to -30.1 +/- 3.9 mV, P less than 0.001; RP-c: from -15.5 +/- 3.8 mV to -26.3 +/- 3.2 mV, P less than 0.001). RP-o and RP-c progressively increased with time of culture up to 7 hr (maximum time examined) while the values reached maxima in in vivo matured oocytes 4.5 hr post-hCG and subsequently declined concomitant with the onset of cumulus expansion. Cumulus to oocyte coupling decreased progressively with time after release from meiotic arrest both in vitro and in vivo, as assessed by a progressive reduction in transfer of either uridine marker or lucifer yellow from the cumulus cell to the oocyte. By 4.5 hr after hCG injection, cumulus expansion had begun in 100% of complexes examined. Expansion was extensive by 7 hr post-hCG and spread of lucifer yellow from a cumulus cell was limited to very few adjacent cumulus cells. Oocyte to cumulus cell metabolic coupling also decreased progressively with time in both treatment groups. Examination of the extent of heterologous ionic coupling revealed that ionic coupling exhibited biphasic and, bidirectionally parallel, increases during meiotic maturation. While these temporal changes were observed in both groups, the coupling ratios were much greater in those complexes matured in vitro than in vivo. These results show that dye, metabolic, and electrical coupling exist between the immature hamster oocyte and its surrounding cumulus cells but that during the early stages of meiosis, metabolic and dye coupling decrease, while electrical coupling increases biphasically. 相似文献