首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Ayling  S. M.  Smith  S. E.  Smith  F. A.  Kolesik  P. 《Plant and Soil》1997,196(2):305-310
The roots of most plants form symbiotic associations with mycorrhizal fungi. The net flux of nutrients, particularly phosphorus (P), from the soil into the plant is greater in mycorrhizal than in comparable non-mycorrhizal plants. However despite the widespread occurrence of mycorrhizal associations the processes controlling the transfer of solutes between the symbionts are poorly understood. To understand the mechanisms regulating the transfer of solutes information about conditions at the interface between plant and fungus is needed.Measurements of apoplastic and intracellular electrical potential difference in leek roots colonised by mycorrhizal fungi and estimates of cytosolic pH in fungal hyphae are presented. These and the implications for plant/fungal mineral nutrition in vesicular-arbuscular mycorrhizas are discussed.  相似文献   

4.
5.
Colonization of the roots of leek (Allium porrum L.) by the arbuscular mycorrhizal fungus Glomus intraradices induced the formation of apocarotenoids, whose accumulation has been studied over a period of 25 weeks. Whereas the increase in the levels of the dominating cyclohexenone derivatives resembles the enhancement of root length colonization, the content of mycorradicin derivatives remains relatively low throughout. Structural analysis of the cyclohexenone derivatives by mass spectrometry and NMR spectroscopy showed that they are mono- and diglycosides of 13-hydroxyblumenol C and blumenol C acylated with 3-hydroxy-3-methyl-glutaric and/or malonic acid. Along with the isolation of three known compounds five others are shown to be hitherto unknown members of the fast-growing family of mycorrhiza-induced cyclohexenone conjugates.  相似文献   

6.
Six chitinases (EC 3.2.1.14) were purified from salicylate‐treated leek ( Allium porrum L.). They all strongly bind to chitin and can roughly be divided into two groups. One group has blocked N‐termini, is completely inhibited by 1 m M AgNO3, has a relatively narrow pH optimum, a temperature optimum of 40°C and cannot degrade the tetramer of chitin. The other group has unblocked N‐termini showing homology to the chitin‐binding lectin WGA and is therefore considered as class I chitinases. This group is only moderately inhibited by 1 m M AgNO3 (30%), has a relatively broad pH optimum, has a higher temperature optimum (50 to 60°C) and can degrade the tetramer of chitin to dimers. Furthermore, all isoforms have molecular masses around 34 kDa as estimated by SDS‐PAGE. They have isoelectric points ranging from 4 to 8 and no detectable lysozyme activity. Two isoforms investigated in more detail differ in their antifungal potential.  相似文献   

7.
Background and AimsAn increase in root hair length and density and the development of arbuscular mycorrhiza symbiosis are two alternative strategies of most plants to increase the root–soil surface area under phosphorus (P) deficiency. Across many plant species, root hair length and mycorrhization density are inversely correlated. Root architecture, rooting density and physiology also differ between species. This study aims to understand the relationship among root hairs, arbuscular mycorrhizal fungi (AMF) colonization, plant growth, P acquisition and mycorrhizal-specific Pi transporter gene expression in maize.MethodsUsing nearly isogenic maize lines, the B73 wild type and the rth3 root hairless mutant, we quantified the effect of root hairs and AMF infection in a calcareous soil under P deficiency through a combined analysis of morphological, physiological and molecular factors.Key ResultsWild-type root hairs extended the rhizosphere for acid phosphatase activity by 0.5 mm compared with the rth3 hairless mutant, as measured by in situ zymography. Total root length of the wild type was longer than that of rth3 under P deficiency. Higher AMF colonization and mycorrhiza-induced phosphate transporter gene expression were identified in the mutant under P deficiency, but plant growth and P acquisition were similar between mutant and the wild type. The mycorrhizal dependency of maize was 33 % higher than the root hair dependency.ConclusionsThe results identified larger mycorrhizal dependency than root hair dependency under P deficiency in maize. Root hairs and AMF inoculation are two alternative ways to increase Pi acquisition under P deficiency, but these two strategies compete with each other.  相似文献   

8.
9.
This study characterizes the molecular and phylogenetic identity of fungi involved in arbuscular mycorrhizal (AM) associations in extant Huperzia and Lycopodium (Lycopodiaceae). Huperzia and Lycopodium are characterized by a life cycle with long-lived autotrophic sporophytes and long-lived mycoheterotrophic (obtain all organic carbon from fungal symbionts) gametophytes. 18S ribosomal DNA was isolated and sequenced from Glomus symbionts in autotrophic sporophytes of seven species of Huperzia and Lycopodium and mycoheterotrophic Huperzia gametophytes collected from the Páramos of Ecuador. Phylogenetic analyses recovered four Glomus A phylotypes in a single clade (MH3) that form AM associations with Huperzia and Lycopodium. In addition, phylogenetic analyses of Glomus symbionts from other nonphotosynthetic plants demonstrate that most AM fungi that form mycoheterotrophic associations belong to at least four specific clades of Glomus A. These results suggest that most mycoheterotrophic plants that form AM associations do so with restricted clades of Glomus A. Moreover, the correspondence of identity of AM symbionts in Huperzia sporophytes and gametophytes raises the possibility that photosynthetic sporophytes are a source of carbon to conspecific mycoheterotrophic gametophytes via shared fungal networks.  相似文献   

10.
Inorganic polyphosphate (poly P) has been considered to be a translocatable form of phosphate (Pi) in arbuscular mycorrhizal fungi (AMF). Here we examined time-course changes in poly P content during the AMF colonization process. Onion (Allium cepa) plants were cultured with or without inoculation with Gigaspora margarita for 2-8 wk with periodic sampling. Poly P in the extracts, purified through gel filtration, was quantified by the reverse reaction of polyphosphate kinase. The length of poly P in mycorrhizal roots appeared to be shorter than in extraradical hyphae or in spores of the AMF, indicating that AMF depolymerize poly P before providing Pi to the host. The poly P content increased as colonization proceeded, and was highly correlated with the weight of the colonized roots. These results support the model that AMF supply Pi to the host through the poly P pool, and that the poly P content of a mycorrhizal root can be a good indicator of the Pi-supplying activity of AMF.  相似文献   

11.
Leek seeds (Allium porrum L.) cv. Winterreuzen were treated for 5 days in stirred bioreactors containing a -1.0 MPa polyethylene glycol (PEG 6000) solution. The level of dissolved oxygen was controlled from zero to approximately two and a half times that of saturation with respect to atmospheric air by bubbling through 02/N2 gas blends from 0% O2 to 50% O2. The treatment with 0% O2 (i.e. bubbling with N2) gave no reduction in germination time compared to untreated seeds after allowing for the time for water imbibition. As the proportion of oxygen was increased, a rapid reduction was observed until a concentration equivalent to air was used. Further increases to the maximum, produced only a marginal further improvement. The reduction in germination times for seeds that had been cabinet dried was longer for all treatments due to the time required for re-imbibition of water but the general response to priming was the same as with undried seeds. Only dried seeds treated with air or higher oxygen concentrations showed enhanced synchronicity of germination times. The percentage germination of seeds from all treatments was the same, including the treatment with nitrogen gas. These tests help to explain the recently reported advantages of using enriched air for seed priming and are one of the necessary protocols for ensuring satisfactory bulk priming.  相似文献   

12.
K. Yano  A. Yamauchi  Y. Kono 《Mycorrhiza》1996,6(5):409-415
 The morphological responses of root systems to localized colonization by endophytes is not well understood. We examined the responses of lateral roots to the arbuscular mycorrhizal (AM) fungus Gigaspora margarita Becker & Hall inoculated locally into the soil. Peanut (Arachis hypogaea L.) and pigeon pea (Cajanus cajan (L.) Millsp.) were examined. Root boxes filled with nutrient-poor soil in were inoculated in one half with the fungus and in the other half with a sterilized inoculum. Responses were apparent after 30 days but not after 20 days. Overall, lateral root development was more advanced in inoculated soil. This was clearly observed for 2nd- and 3rd-order lateral roots, but less clear for 1st-order lateral roots in both species, although percentage of colonized root length was higher in 1st-order lateral roots. Whilst in peanut the responses were clearly evident at the level of lateral roots initiated on more proximal parts of the tap root axis, they occurred on more distal parts in pigeon pea. We conclude that plants under nutrient-poor conditions give priority to mycorrhizal roots when partitioning assimilation products within the root system. Thus, AM formation may induce local morphological alteration of root systems. Accepted: 29 August 1996  相似文献   

13.
Leek plants (Allium porrum L.) inoculated with Glomus mosseae were raised on sterilized soil/sand medium amended with Ca(H2PO4)2.H2O to test the hypothesis that high concentration of soil P inhibits formation of vesicular-arbuscular (VA) mycorrhizas by reducing concentration of soluble carbohydrate in the root. When P supply was increased, from either P addition or VA mycorrhizal infection, there was initially also an increase in concentration of soluble carbohydrate in the root. At the concentration of soil P at which infection was reduced, concentration of soluble carbohydrate was at its maximum. Therefore the above hypothesis is discounted. An increased delay in infection establishment and a greater number of abortive entry points would suggest that high concentration of soil P reduces VA mycorrhizal infection by changing the anatomy of the root to make it resistant to fungal penetration.  相似文献   

14.
15.
Arbuscular mycorrhizal (AM) fungi in a chronosequence of 5–42-year-old Caragana korshinskii plantations in the semi-arid Loess Plateau region of northwestern China were investigated. AM fungi colonization, spore diversity and PCR-denatured gradient gel electrophoresis-based AM fungal SSU rRNA gene sequences were analyzed. AM fungi colonization [measured as the percent of root length (%RLC), vesicular (%VC) and arbuscular (%AC) colonization] and spore density were significantly correlated with sampling month, but not with plant age, except for %RLC. The percent of vesicular colonization was negatively correlated with soil total nitrogen and organic carbon, and spore density was negatively correlated with soil moisture and available phosphorus. Ten distinguishable AM fungal spore morphotypes, nine Glomus and one Scutellospora species, were found. Nine AM fungal Glomus phylotypes were identified by sequencing, but at each sampling time only four to six AM fungal phylotypes were detected. The AM fungal community was significantly seasonal, whereas the AM fungal species richness did not increase with plantation age. A significant change in AM fungal colonization and community composition over an annual cycle was observed in this study, and our results suggest that the changes of AM are the product of the interaction between host phenology, soil characteristics and habitat. Understanding these interactions is essential if habitat restoration is to be effective.  相似文献   

16.
Effects of the arbuscular mycorrhizal fungus (AMF) Glomus hoi on the carbon economy of perennial ryegrass (Lolium perenne) were investigated by comparing nonmycorrhizal and mycorrhizal plants of the same size, morphology and phosphorus status. Plants were grown in the presence of CO2 sources with different C isotope composition (delta13C -1 or -44). Relative respiration and gross photosynthesis rates, and belowground allocation of C assimilated during one light period ('new C'), as well as its contribution to respiration, were quantified by the concerted use of 13CO2/12CO2 steady-state labelling and 13CO2/12CO2 gas-exchange techniques. AMF (G. hoi) enhanced the relative respiration rate of the root + soil system by 16%, inducing an extra C flow amounting to 3% of daily gross photosynthesis. Total C flow into AMF growth and respiration was estimated at < 8% of daily gross photosynthesis. This was associated with a greater amount of new C allocated belowground and respired in mycorrhizal plants. AMF colonization affected the sources supplying belowground respiration, indicating a greater importance of plant C stores in supplying respiration and/or the participation of storage pools within fungal tissues. When ontogenetic and nutritional effects were accounted for, AMF increased belowground C costs, which were not compensated by increased photosynthesis rates. Therefore the instantaneous relative growth rate was lower in mycorrhizal plants.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts that form intimate associations with the majority of plants growing in aerobic soil; fungal endophytes live internally, either intercellularly or intracellularly, and asymptomatically within plant tissues. Their presence is correlated with an increased response to biotic and abiotic stress. The populations of AM and of endophytic fungi were studied in the roots of different rice varieties grown in aerobic condition, in experimental fields in Vercelli, North Italy. All the rice varieties resulted colonised by AM fungi with a percentage of arbuscularisation ranging between 4% and 28%. Preliminary molecular analyses on some rice varieties showed that the AM population was composed of fungi identified as Glomus intraradices , on the basis of 18S ribosomal gene. All the varieties analysed but one resulted in colonisation by endophytic fungi. About 300 fungal isolates were obtained, belonging mainly to the genera Neotyphodium , Stagonospora and Penicillium .  相似文献   

18.
19.
Arbuscular mycorrhizal fungal (AMF) communities were established in pots using fungal isolates from a single field in Switzerland. It was tested whether multispecies mixtures provided more phosphorus and supported greater plant growth than single AMF species. Two host plants, medic (Medicago truncatula) and leek (Allium porrum), were inoculated with three AMF species (Glomus mosseae, G. claroideum and G. intraradices), either separately or in mixtures. The composition of the AMF communities in the roots was assessed using real-time PCR to determine the copy number of large ribosomal subunit genes. Fungal communities in the roots were usually dominated by one AMF species (G. mosseae). The composition of the communities depended on both plant identity and the time of harvest. Leek colonized by a mixture of G. claroideum and G. intraradices acquired more P than with either of the two AMF separately. Direct evidence is provided for functional complementarity among species within the AMF community colonizing a single root system. Competition among the species poses a major challenge in interpreting experiments with mixed inoculations, but this is greatly facilitated by use of real-time PCR.  相似文献   

20.
Arbuscular mycorrhizal (AM) fungi are biotrophic symbionts colonizing about two-thirds of land plant species and found in all ecosystems. They are of major importance in plant nutrient supply and their diversity is suggested to be an important determinant of plant community composition. The diversity of the AM fungal community composition in the roots of two plant species (Agrostis capillaris and Trifolium repens) that co-occurred in the same grassland ecosystem was characterized using molecular techniques. We analysed the small subunit (SSU) ribosomal RNA gene amplified from a total root DNA extract using AM fungal-specific primers. A total of 2001 cloned fragments from 47 root samples obtained on four dates were analysed by restriction fragment length polymorphism, and 121 of them were sequenced. The diversity found was high: a total of 24 different phylotypes (groups of phylogenetically related sequences) colonized the roots of the two host species. Phylogenetic analyses demonstrate that 19 of these phylotypes belonged to the Glomaceae, three to the Acaulosporaceae and two to the Gigasporaceae. Our study reveals clearly that the AM fungal community colonizing T. repens differed from that colonizing A. capillaris, providing evidence for AM fungal host preference. In addition, our results reveal dynamic changes in the AM fungal community through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号