首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite over 30 years of work, the fundamental structure of eukaryotic chromatin remains controversial. Here, we review the roots of this controversy in disparities between results derived from studies of chromatin in nuclei, chromatin isolated from nuclei, and chromatin reconstituted from defined components. Thanks to recent advances in imaging, modeling, and other approaches, it is now possible to recognize some unifying principles driving chromatin architecture at the level of the ubiquitous '30 nm' chromatin fiber. These suggest that fiber architecture involves both zigzag and bent linker motifs, and that such heteromorphic structures facilitate the observed high packing ratios. Interactions between neighboring fibers in highly compact chromatin lead to extensive interdigitation of nucleosomes and the inability to resolve individual fibers in compact chromatin in situ.  相似文献   

2.
A variable topology for the 30-nm chromatin fibre   总被引:2,自引:0,他引:2  
Wu C  Bassett A  Travers A 《EMBO reports》2007,8(12):1129-1134
  相似文献   

3.
The past several years has seen increasing appreciation for plasticity of higher-level chromatin folding. Four distinct '30nm' chromatin fiber structures have been identified, while new in situ imaging approaches have questioned the universality of 30nm chromatin fibers as building blocks for chromosome folding in vivo. 3C-based approaches have provided a non-microscopic, genomic approach to investigating chromosome folding while uncovering a plethora of long-distance cis interactions difficult to accommodate in traditional hierarchical chromatin folding models. Recent microscopy based studies have suggested complex topologies co-existing within linear interphase chromosome structures. These results call for a reappraisal of traditional models of higher-level chromatin folding.  相似文献   

4.
5.
6.
The mechanism by which chromatin is decondensed to permit access to DNA is largely unknown. Here, using a model nucleosome array reconstituted from recombinant histone octamers, we have defined the relative contribution of the individual histone octamer N-terminal tails as well as the effect of a targeted histone tail acetylation on the compaction state of the 30 nm chromatin fiber. This study goes beyond previous studies as it is based on a nucleosome array that is very long (61 nucleosomes) and contains a stoichiometric concentration of bound linker histone, which is essential for the formation of the 30 nm chromatin fiber. We find that compaction is regulated in two steps: Introduction of H4 acetylated to 30% on K16 inhibits compaction to a greater degree than deletion of the H4 N-terminal tail. Further decompaction is achieved by removal of the linker histone.  相似文献   

7.
The method of velocity sedimentation have been used to investigate ionic-strength-induced compaction of sea urchin sperm chromatin characterized by extremely long linker DNA (100 b.p.). The dependence of sedimentation coefficients of oligonucleosomes on the number of nucleosomes in the chain have been studied in the range of ionic strength from 0.005 to 0.085. Analysis of these data indicates that such structural parameters of sea urchin sperm chromatin fibre as the diameter of the chain and the length of the chain per nucleosome are quite similar to those of chromatin with shorter linker DNA, but the DNA packing ratio is higher. The structure of sea urchin sperm oligonucleosomes agrees well with the model of three-dimensional zig-zag-shaped chain with linker DNA forming a loop. The possible role of alpha-helical regions of the C-terminal domain of sea urchin sperm histone H1 in the long linker DNA folding is discussed.  相似文献   

8.
Molecular modeling of the chromatosome particle   总被引:4,自引:2,他引:2  
In an effort to understand the role of the linker histone in chromatin folding, its structure and location in the nucleosome has been studied by molecular modeling methods. The structure of the globular domain of the rat histone H1d, a highly conserved part of the linker histone, built by homology modeling methods, revealed a three-helical bundle fold that could be described as a helix–turn–helix variant with its characteristic properties of binding to DNA at the major groove. Using the information of its preferential binding to four-way Holliday junction (HJ) DNA, a model of the domain complexed to HJ was built, which was subsequently used to position the globular domain onto the nucleosome. The model revealed that the primary binding site of the domain interacts with the extra 20 bp of DNA of the entering duplex at the major groove while the secondary binding site interacts with the minor groove of the central gyre of the DNA superhelix of the nucleosomal core. The positioning of the globular domain served as an anchor to locate the C-terminal domain onto the nucleosome to obtain the structure of the chromatosome particle. The resulting structure had a stem-like appearance, resembling that observed by electron microscopic studies. The C-terminal domain which adopts a high mobility group (HMG)-box-like fold, has the ability to bend DNA, causing DNA condensation or compaction. It was observed that the three S/TPKK motifs in the C-terminal domain interact with the exiting duplex, thus defining the path of linker DNA in the chromatin fiber. This study has provided an insight into the probable individual roles of globular and the C-terminal domains of histone H1 in chromatin organization.  相似文献   

9.
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.  相似文献   

10.
11.
NASP has been described as a histone H1 chaperone in mammals. However, the molecular mechanisms involved have not yet been characterized. Here, we show that this protein is not only present in mammals but is widely distributed throughout eukaryotes both in its somatic and testicular forms. The secondary structure of the human somatic version consists mainly of clusters of α-helices and exists as a homodimer in solution. The protein binds nonspecifically to core histone H2A-H2B dimers and H3-H4 tetramers but only forms specific complexes with histone H1. The formation of the NASP-H1 complexes is mediated by the N-and C-terminal domains of histone H1 and does not involve the winged helix domain that is characteristic of linker histones. In vitro chromatin reconstitution experiments show that this protein facilitates the incorporation of linker histones onto nucleosome arrays and hence is a bona fide linker histone chaperone.  相似文献   

12.
13.
An EcoRI chromatin fragment containing the adult beta-globin gene and flanking sequences, isolated from chicken erythrocyte nuclei, sediments at a reduced rate relative to bulk chromatin fragments of the same size. We show that the specific retardation cannot be reversed by adding extra linker histones to native chromatin. When the chromatin fragments are unfolded either by removing linker histones or lowering the ionic strength, the difference between globin and bulk chromatin fragments is no longer seen. The refolded chromatin obtained by restoring the linker histones to the depleted chromatin, however, exhibits the original sedimentation difference. This difference is therefore due to a special property of the histone octamers on the active gene that determines the extent of its folding into higher-order structure. That it is not due to the differential binding of linker histones in vitro is shown by measurements of the protein to DNA ratios using CsCl density-gradients. Both before and after selective removal of the linker histones, the globin gene fragment and bulk chromatin fragments exhibit only a marginal difference in buoyant density. In addition, we show that cleavage of the EcoRI fragment by digestion at the 5' and 3' nuclease hypersensitive sites flanking the globin gene liberates a fragment from between these sites that sediments normally. We conclude that the hypersensitive sites per se are responsible for the reduction in sedimentation rate. The non-nucleosomal DNA segments appear to be too long to be incorporated into the chromatin solenoid and thus create spacers between separate solenoidal elements in the chromatin, which can account for its hydrodynamic behaviour.  相似文献   

14.
Despite the existence of certain differences between yeast and higher eukaryotic cells a considerable part of our knowledge on chromatin structure and function has been obtained by experimenting on Saccharomyces cerevisiae. One of the peculiarities of S. cerevisiae cells is the unusual and less abundant linker histone, Hho1p. Sparse is the information about Hho1p involvement in yeast higher-order chromatin organization. In an attempt to search for possible effects of Hho1p on the global organization of chromatin, we have applied Chromatin Comet Assay (ChCA) on HHO1 knock-out yeast cells. The results showed that the mutant cells exhibited highly distorted higher-order chromatin organization. Characteristically, linker histone depleted chromatin generally exhibited longer chromatin loops than the wild-type. According to the Atomic force microscopy data the wild-type chromatin appeared well organized in structures resembling quite a lot the "30-nm" fiber in contrast to HHO1 knock-out yeast.  相似文献   

15.
16.
Linker histones play a fundamental role in determining higher order chromatin structure as a consequence of their association with nucelosomal DNA. Yet the locations and structural consequences of linker histone binding are still enigmatic. Here, using cryo-atomic force microscopy, we show that the linker histone H5 in native chromatin and in chromatosomes reconstituted on the 5S rDNA template is located at the dyad of the nucleosome core particle, within the "stem" structure. Direct measurement also indicates that the length of free linker DNA between chromatosomes in native chromatin is approximately 30 bp, slightly shorter than that estimated from nuclease digestion assays.  相似文献   

17.
In recent years, the chromatin field has witnessed a renewed interest in histone variants as pertaining to their structural role, but mainly because of the functional specificity they impart to chromatin. In this review, I am going to discuss several of the most recent structural studies on core histone (H2A.Bbd, H2A.Z, H2A.X, macroH2A, H3.3, CENP-A) and linker histone variants (histone H1 microheterogeneity) focusing on their role in nucleosome stability and chromatin fibre dynamics with special emphasis on their possible functional implications. The data accumulated to date indicates that histone variability plays an important role in the histone-mediated regulation of chromatin metabolism. Understanding and deciphering the underlying structural amino acid code behind such variability remains one of the most exciting future challenges in chromatin research.  相似文献   

18.
Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.  相似文献   

19.
Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号