首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Many species of fish show a partial or complete thermal compensation of metabolic rate on acclimation from summer to winter temperatures. In the present study Crucian carp (Carassius carassius L.) were acclimated for two months to either 2° C or 28° C and the effects of temperature acclimation on mitochondrial content and capillary supply to myotomal muscles determined.Mitochondria occupy 31.4% and 14.7% of slow fibre volume in 2°C- and 28° C-acclimated fish, respectively. Fast muscles of coldbut not warm-acclimated fish show a marked heterogeneity in mitochondrial volume. For example, only 5 % of fast fibres in 28° C-acclimated fish contain 5 % mitochondria compared to 34 % in 2° C-acclimated fish. The mean mitochondrial volume in fast fibres is 6.1 % and 1.6 % for coldand warm-acclimated fish, respectively.Increases in the mitochondrial compartment with cold acclimation were accompanied by an increase in the capillary supply to both fast (1.4 to 2.9 capillaries/fibre) and slow (2.2 to 4.8 capillaries/fibre) muscles. The percentage of slow fibre surface vascularised is 13.6 in 28° C-acclimated fish and 32.1 in 2° C-acclimated fish. Corresponding values for fast muscle are 2.3 and 6.6 % for warm and cold-acclimated fish, respectively. Maximum hypothetical diffusion distances are reduced by approximately 23–30 % in the muscles of 2° C-compared to 28° C-acclimated fish. However, the capillary surface supplying 1 3 of mitochondria is similar at both temperatures.Factors regulating thermal compensation of aerobic metabolism and the plasticity of fish muscle to environmental change are briefly discussed.  相似文献   

2.
Summary Cytosolic extracts of liver, kidney, spleen, gill, red and white muscle from rainbow trout acclimated to 4 and 17°C, respectively, have been investigated in vitro with respect to their enzymic activity in stimulating the growth of nascent peptide chains (labelled polyphenylalanine) at assay temperatures from 5 to 25°C using polyuracil as messenger RNA. The elongation step of protein synthesis is characterized by aQ 10 value of about 2.4 (range 10–25°C) in all organs from both, 4 and 17°C acclimated fish.Except for the red muscle, the organs of cold acclimated trout, however, exhibit significantly higher specific elongation rates (mol phenylalanine polymerized/(g wet weight·h)) at any experimental temperature than those of warm acclimated fish. This increase of the elongation rates varies between the organs and ranges from +29% (liver) to +60% in the gill. The specific acylation rate (mol phenylalanyl-tRNA formed/(g wet weight·h)) surpasses the specific elongation rate by a factor of at least 8.5. Moreover, the specific acylation rate per mg protein is independent of acclimation temperature.It is concluded that the increased specific elongation rates in 4°C acclimated trout are not due to altered pool sizes of the precursor phenylalanyl-tRNA, but reflect an effective enhancement of enzymic elongation factor activities.In accordance with data taken from literature, this finding suggests a compensatory enhancement of in vivo protein synthesis to occur in trout during cold acclimation.Abbreviations E a apparent activation energy - EF elongation factor - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PHE phenylalanine - PHE-tRNA phenylalanyl transfer ribonucleic acid - POLY (U) poly-uracil - Q 10 van't Hoff's temperature coefficient - T accl acclimation temperature - T exp experimental temperature - TRITON X-100 octylphenol-polyethylene-glycolether  相似文献   

3.
The effect of 30 days of acclimation at 5°C and of a semiweekly series of short severe cold exposures (Tb 20–30°C) on metabolic capacity (Mmax) was measured in Alaskan meadow voles(Microtus pennsylvanicus tananaensis) and Wisconsin deer mice(Peromyscus maniculatus bairdii). Meadow voles, with an Mmax of 12–14 ml/(g.h) or 8–9 met (Mmax/Mst), showed little response to either treatment. In deer mice, however, acclimation at 5°C increased Mmax by about half (from 11.0 to 15.4 ml/(g.h) or from 6.0 to 9.1 met). In 25°C-acclimated deer mice 7 severe cold exposures produced a similar increase of which about half was seen with the first 2 exposures. In 5°C-acclimated deer mice, Mmax averaged a 0.3 ml/(g.h) increase for each cold exposure to reach a level of 19 ml/(g.h) or 11 met after 6 weeks.  相似文献   

4.
Summary The time-course of changes in skeletal muscle pH during arousal from hibernation in the Columbian ground squirrel was studied using31P NMR spectroscopy. In hibernation (T re 7–9°C), shoulder/neck muscle pH was 7.45±0.03 and Im was 0.60. In euthermia (T re 37°C), muscle pH was 7.24±0.05 and Im was 0.75. Thus the overall pH-temperature coefficient was-0.009 pH units/°C, indicating acidification of the muscle in hibernation. During the transition from hibernation to euthermia, however, the muscle shows a nonlinear pattern of pH change. In early arousal (T sh<20–25°C,T re<15°C) muscle pH does not change and muscle Im increases to 0.72. In later arousal (T sh>20–25°C,T re>15°C) muscle pH decreases gradually toward the euthermic value and muscle Im increases only slightly from 0.72 to 0.75. These results support the hypothesis that intracellular acidification of the muscle, present during hibernation, is reversed in early arousal. This may facilitate an increase in muscle metabolism and the contribution of maximal shivering thermogenesis to rewarming of the animal.Abbreviations Im dissociation ratio of protein imidazole buffergroups - NST non-shivering thermogenesis - BAT brown adipose tissue - dp H/dT temperature coefficient of pH - pH i intracellular pH - 31 P NMR 31Phosphorus nuclear magnetic resonance - P i chemical shift of inorganic phosphate relative to PCr - PCr phosphocreatine - T b body temperature - T re rectal temperature - T sh subcutaneous shoulder temperature - T a ambient temperature  相似文献   

5.
Summary The interacting effects of pH and temperature on membrane fluidity were studied in plasma membranes isolated from liver of rainbow trout (Oncorhynchus mykiss) acclimated to 5 and 20°C. Fluidity was determined as a function of temperature under conditions of both constant (in potassium phosphate buffer) and variable pH (in imidazole buffer, consistent with imidazole alphastat regulation) from the fluorescence anisotropy of two probes: 1,6-diphenyl-1,3,5-hexatriene, which intercalates into the bilayer interior, and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene which is anchored at the membrane/water interface. The temperature dependence of the anisotropy parameter for 1,6-diphenyl-1,3,5-hexatriene in plasma membranes of 20°C-acclimated trout was greater when determined in phosphate (AP per °C=-0.047) than in imidazole buffer (AP per °C=-0.022); similar, but less significant, trends were noted with 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene. In contrast, the temperature dependence of fluidity (AP/°C in the range-0.0222 to-0.027) did not vary with buffer composition in membranes of 5°C-acclimated trout. In phosphate buffer, anisotropy parameter values for 1,6-diphenyl-1,3,5-hexatriene were significantly lower in 5°C-than 20°C-acclimated trout, indicating a less restricted probe environment following cold acclimation and nearly perfect compensation (91%) of fluidity. Temperature-dependent patterns of acid-base regulation were estimated to account for 11–40% of the fluidization evident in membranes of 5°C-trout, but a period of cold acclimation was required for complete fluidity compensation. In contrast, no homeoviscous adaptation was evident in imidazole buffer, indicating that membrane fluidity is sensitive to buffer composition. Accordingly, vesicles of bovine brain phosphatidylcholine, suspensions of triolein, and plasma membranes of 5°C-acclimated trout were consistently more fluid in imidazole than phosphate buffer. Membranes of 5°C-acclimated trout were enriched in molecular species of phosphatidylcholine containing 22:6n3 (at the expense of species containing 18:1n9 and 18:2n6) compared to membranes of 20°C-trout; consequently, the unsaturation index was significantly higher (3.29 versus 2.73) in trout maintained at 5 as opposed to 20°C. It is concluded that: 1) the chemical composition of the internal milieu can significantly influence the physical properties of membrane lipids; 2) temperature-dependent patterns of intracellular pH regulation may partially offset the ordering effect of low temperature on membrane fluidity in 20°C-acclimated trout transferred to 5°C, but not in 5°C-acclimated trout transferred to warmer temperatures; 3) the majority of the thermal compensation of plasma membrane fluidity resulting from a period of temperature acclimation most likely reflects differences in membrane composition between acclimation groups; 4) imidazole apparently interacts with trout hepatocyte plasma membranes in a unique way.Abbreviations im netcharge stateofproteins - AP anisotropyparameter - bw body weight - DPH 1,6-diphenyl-1,3,5-hexatriene - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonicacid - PC phosphatidylcholine - pHe pHofarterial blood - pHi intracellular pH - TMA-DPH 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene - TRIS tris(hydroxymethyl)aminomethane  相似文献   

6.
Summary The kinetics of acetate biomethanation was studied in a high recycle ratio biological fluidized bed reactor behaving in practice as a completely mixed reactor. The active biofilm consisted of bacteria from a methane fermenter that after spontaneous immobilization on the bed particles (sand) were adapted to acetate as the only carbon source. The effects of temperature (13°, 20°, 25° and 35°C), substrate concentration (500, 1000 and 1500 mg chemical oxygen demand (COD) l-1) and hydraulic retention time (1 to 8 h) on substrate consumption were studied. Maximum substrate consumption (as % COD reduction) amounted from 25% (13°C, 1500 mg COD l-1) to 93% (35°C, 500 mg COD l-1). At 35°C the concentration of attached biomass presented a weakly increase with reactor substrate concentration (from 3.10 g VS l-1 to 4.54 g VS l-1 for 32 and 1150 mg COD l-1 respectively). On the other hand when reducing , a sharp incrase in biomass loss coefficient was observed showing that excess biofilm growth was continuously removed by shearing forces. Thus in the assayed conditions the attached biomass concentration was basically determined by the bed superficial velocity. Result show that diffusional resistances are negligible. Data are fairly well correlated by a variable order kinetic model. The apparent reaction order is a function of temperature and increases from 0.27 to 0.7 when temperature decreases from 35° C to 13°C.Nomenclature b Total biomass loss coefficient (T-1) - J Flux of substrate removal into the biofilm surface (ML-2 T-1) - J d Flux of substrate removed into the biofilm surface in deep conditions (ML-2 T-1) - k Maximum specific rate of substrate utilization (T-1) - K Variable order kinetic constant (T-1 Mn-1 L3n-3) - K s9 Hall saturation constant (ML-3) - n Reaction order - q Feed flow rate (L3 T-1) - S Substrate concentration (ML-3) - Se Effluent substrate concentration (ML-3) - So Influent substrate concentration (ML-3) - Semin Minimum substrate concentration able to sustain a steady-state biofilm (ML-3) - T Temperature - t Time(T) - V Bed volume (L3) - VS Volatile solids (M) - VSS Volatile suspended solids - X Attached biomass concentration (ML-3) - X c Effluent volatile suspended solids (ML-3) - Y Yield coefficient - Hydraulic retention time (T) This work forms part of a Doctoral Thesis of senior author  相似文献   

7.
Summary The inheritance of heat-stable resistance to the root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, was studied in crosses between different accessions and clones of Lycopersicon peruvianum L. F1, F2 and BC1 generations were evaluated for their index of resistance based on numbers of eggs and infective second-stage juveniles (J2) per gram of root, and the segregation ratios were determined in experiments carried out at constant soil temperatures of 25 °C and 30 °C. L. peruvianum P.I. 270435 clones 3 MH and 2R2 and P.I. 126443 clone 1 MH, all heatstable resistant, were crossed with L. peruvianum P.I. 126440 clone 9 MH, which is susceptible at both 25 °C and 30 °C. All F1 progeny were resistant at 25 °C and 30 °C; F2 and BC1 generations at 25 °C gave resistant: susceptible (RS) ratios of 151 and 31, respectively, which suggests that resistance is conditioned by two independently assorting genes. However, at 30 °C, RS ratios of 31 and 11 were observed for the F2 and BC1 generations, respectively. These results indicate that heat-stable resistance is conferred by a single dominant gene expressed at 30 °C, while the second resistance gene is heat unstable and not expressed at 30 °C. P.I. 270435 clones 2R2 and 3 MH and P.I. 126443 clone 1 MH were crossed with P.I. 128657 clone 3 R4 (source of gene Mi), which is resistant at 25 °C but susceptible at 30 °C. All of the F1 progeny were resistant at 25 °C and 30 °C.TC1 progeny of 270435-2 R2 x 128657-3 R4, 270435-3 MH x 128657-3 R4 and 126443-1 MH x 128657-3 R4 crossed with susceptible 126440-9 MH were all resistant at 25 °C and segregated in a 11 ratio at 30 °C. These results also suggest that the heat-stable resistance is monogenic and that it is non-allelic to gene Mi. The non-segregation of TC1 progenies at 25 °C, suggests that the heat-unstable resistance factor in L. peruvianum P.I. 270435 clones 2 R2 and 3 MH and in P.I. 126443 clone 1 MH is allelic to or the same as gene Mi. We propose the symbol Mi-2 for the gene in P.I. 270435 that confers heat-stable resistance to M. incognita.  相似文献   

8.
Summary Evaporative water loss (EWL), oxygen concumption , and body temperature (Tb) of Anna's Hummingbirds (Calypte anna; ca. 4.5g) were measured at combinations of ambient temperature (Ta) and water vapor density (va) ranging from 20 to 37 °C and 2 to 27 g·m-3, respectively. The EWL decreased linearly with increasing va at all temperatures. The slopes of least squares regression lines relating EWL to va at different temperatures were not significantly different and averaged-0.50 mg H2O·m-3·g-2·h-1 (range:-0.39 to-0.61). Increased va restricted EWL in C. anna more than has been reported for other endotherms in dry air. The percent of metabolic heat production dissipated by evaporation ( ) was lower than that of other birds in dry air, but higher than that for other birds at high humidity when Ta 33 °C. When Ta>33 °C the effect of humidity on was similar to that in other birds. Calypte anna might become slightly hyperthermic at Ta>37 °C, which could augment heat transfer by increasing the Tb-Ta gradient. Body temperature for C. anna in this study was 43 °C (intramuscular) at Tas between 25 and 35 °C, which is above average for birds. It is estimated that field EWL is less than 30% of daily water loss in C. anna under mild temperature conditions (<35 °C).Abbreviations BMR basal metabolic rate - EWL evaporative water loss - percent of metabolic heat production dissipated by evaporation - ambient water vapor density - body surface water vapor density - RMR resting metabolic rate - Ta ambient-temperature - Tb body temperature - Td dew-point temperature - TNZ thermoneutral zone - Ts body surface temperature - carbon dioxide production - oxygen consumption  相似文献   

9.
Summary The effects of different ambient temperatures (T a) on gas exchange and ventilation in deer mice (Peromyscus maniculatus) were determined after acclimation to low and high altitude (340 and 3,800 m).At both low and high altitude, oxygen consumption ( ) decreased with increasingT a atT a from –10 to 30 °C. The was 15–20% smaller at high altitude than at low altitude atT a below 30 °C.Increased atT a below thermoneutrality was supported by increased minute volume ( ) at both low and high altitude. At mostT a, the change in was primarily a function of changing respiration frequency (f); relatively little change occurred in tidal volume (V T) or oxygen extraction efficiency (O2EE). AtT a=0 °C and below at high altitude, was constant due to decliningV T and O2EE increased in order to maintain high .At high altitude, (BTP) was 30–40% higher at a givenT a than at low altitude, except atT a below 10 °C. The increased at high altitude was due primarily to a proportional increase inf, which attained mean values of 450–500 breaths/min atT a below 0 °C. The (STP) was equivalent at high and low altitude atT a of 10 °C and above. At lowerT a, (STPD) was larger at low altitude.At both altitudes, respiratory heat loss was a small fraction (<10%) of metabolic heat production, except at highT a (20–30 °C).Abbreviations EHL evaporative heat loss - f respiration frequency - HL a heat loss from warming tidal air - HL e evaporative heat loss in tidal air - HL total respiratory heat loss - MHP metabolic heat production - O 2 EE oxygen extraction efficiency - RQ respiratory quotient - T a ambient temperature - T b body temperatureT lc lower critical temperature - carbon dioxide production - evaporative water loss - oxygen consumption - minute volume - V T tidal volume  相似文献   

10.
Summary The contractile properties of swimming muscles have been investigated in marine teleosts from Antarctic (Trematomus lepidorhinus, Pseudochaenichthys georgianus), temperate (Pollachius virens, Limanda limanda, Agonis cataphractus, Callionymus lyra), and tropical (Abudefduf abdominalis, Thalassoma duperreyi) latitudes. Small bundles of fast twitch fibres were isolated from anterior myotomes and/or the pectoral fin adductor profundis muscle (m. add. p). Live fibre preparations were viable for several days at in vivo temperatures, but became progressively inexcitable at higher or lower temperatures. The stimulation frequency required to produce fused isometric tetani increased from 50 Hz in Antarctic species at 0°C to around 400 Hz in tropical species at 25°C. Maximum isometric tension (Po) was produced at the normal body temperature (NBT) of each species (Antarctic, 0–2°C; North Sea and Atlantic, 8–10°C; Indo-West Pacific, 23–25°C). P0 values at physiological temperatures (200–300 kN·m–2) were similar for Antarctic, temperate, and tropical species. A temperature induced tension hysteresis was observed in muscle fibres from some species. Exposure to <0°C in Antarctic and <2°C in temperate fish resulted in the temporary depression of tension over the whole experimental range, an effect reversed by incubation at higher temperatures. At normal body temperatures the half-times for activation and relaxation of twitch and tetanic tension increased in the order Antarctic>temperate>tropical species. Relaxation was generally much slower at temperatures <10°C in fibres from tropical than temperate fish. Q10 values for these parameters at NBTs were 1.3 2.1 for tropical species, 1.7–2.6 for temperate species, and 1.6–3.5 for Antarctic species. The forcevelocity (P-V) relationship was studied in selected species using iso-velocity releases and the data below 0.8 P0 iteratively fitted to Hill's equation. The P-V relation at NBT was found to be significantly less curved in Antarctic than temperate species. The unloaded contraction velocity (Vmax) of fibres was positively correlated with NBT increasing from about 1 muscle fibre length·s–;1 in an Antarctic fish (Trematomus lepidorhinus) at 1°C to around 16 muscle fibre lengths·s–1 in a tropical species (Thalassoma duperreyi) at 24°C. It is concluded that although muscle contraction in Antarctic fish shows adaptations for low temperature function, the degree of compensation achieved in shortening speed and twitch kinetics is relatively modest.Abbreviations ET environmental temperature - m. add. p major adductor profundis - m. add. s. major adductor superficialis - NBT normal body temperature - P 0 maximum isometric tension - P-V force velocity - SR sarcoplasmic reticulum - T 1/2 a half activation time - T 1/2 r half relaxation time - V max unloaded contraction  相似文献   

11.
Summary Respiration of an undescribed species of soil nematode of the genus Chiloplacus from the Canadian High Arctic was measured at 2°, 5°, 10°, 15°, 20° and 25°C. The corresponding metabolic rates were 0.2697×10-3 l, 0.3406×10-3 l, 0.8408×10-3 l, 0.8539×10-3 l, 1.8420×10-3 l and 2.9360×10-3 l O2 ind-1 h-1, respectively, for a nematode of 1.0 g dry weight. The relationship between respiration and dry weight for Chiloplacus sp. at 10°C is described by the function log R=-3.0693+0.8844 log W. Q10 values for the 2°–5°, 5°–10°, 10°–15°, 15°–20° and 20°–25°C temperature intervals were 2.18, 6.09, 1.03, 4.65 and 2.54, respectively. Chiloplacus sp. showed raised metabolic rates at low tempetatures compared with species from warmer environments. Metabolic rates of representative samples of the soil, nematode fauna (dominated by individuals of the genus Plectus) from the same location were 0.1593×10-3 l, 0.3603×10-3 l and 0.5332×10-3 l O2 ind-1 h-1 at 5°, 10° and 15°C for an average nematode of 0.4297 g dry weight.  相似文献   

12.
When individual mice were examined, it was found that the colonic body temperatureT col of each individual within a genetically heterogeneous population tended to remain either above (warm) or below (cool) the population mean.T col of warm, but not cool, mice showed circadian variation. When exposed to aT a of 43° C, theT col of cool mice increased by as musch as 2.4° C more than that of warm mice for a given 15 min increment of heating at 43°C. Survival of mice after acute lethal heat load (LD75, –45°C) was significantly inversely correlated withT col. Small persistent differences in body temperature of individuals may indicate differing thermal adaptedness.  相似文献   

13.
Atlantic salmon juveniles reared at constant temperature (9–10°C) were exposed to four photoperiod treatment and sampled every 2 weeks from January through May. Fish reared under normal photoperiod exhibited eight-and three fold increases in plasma growth hormone and gill Na+, K+-ATPase activity, respectively, between January and April. Fish exposed to abrupt increases in daylength (LD 15:9) in February or March responded with earlier increases in plasma growth hormone and gill Na+, K+-ATPase activity, and earlier decreases in condition factor relative to fish in the normal photoperiod group. Fish maintained under short daylength (LD 9:15) from January to May exhibited delayed and muted increases in plasma growth hormone and gill Na+, K+-ATPase activity. Plasma thyroxine exhibited a 2.5-fold increase from February to late March in the normal photoperiod group, was generally lower in the LD 9:15 group, but exhibited no obvious response to abrupt increases in daylength. There was an increase in plasma 3,5,3-triiodo-l-thyronine with time in all groups (43–80%) but no significant response to photoperiod. Plasma levels of somatostatin-25 were highest in the LD 9:15 group, but there was no detectable response to increased daylength in any of the photoperiod treatments. The results indicate that plasma growth hormone is responsive to increased daylength and may be causally related to subsequent increases in gill Na+, K+-ATPase.Abbreviations ANOVA two-way analysis of variance - BCA bicinchoninic acid - BSA Bovine serum albumin - EDTA ethylene diamine tetraacetic acid - ELISA enzyme-linked immunosorbent assay - EST eastern standard time - GH growth hormone - GLU Glucagen - IgG Immunoglobulin G - INS Insulin - LDN Simulated natural photoperiod - RIA radio immuno assay - RIA radio immuno assay - SEI Sucrose EDTA imidazole - SS-25 somatostatin-25 - SW sea water - T 3 3,5,3 triiodo-l-thyronine - T 4 thyroxine  相似文献   

14.
Summary Adelie penguins (Pygoscelis adeliae) experience a wide range of ambient temperatures (T a) in their natural habitat. We examined body temperature (T b), oxygen consumption ( ), carbon dioxide production ( ), evaporative water loss ( ), and ventilation atT a from –20 to 30 °C. Body temperature did not change significantly between –20 and 20°C (meanT b=39.3°C).T b increased slightly to 40.1 °C atT a=30°C. Both and were constant and minimal atT a between –10 and 20°C, with only minor increases at –20 and 30°C. The minimal of adult penguins (mean mass 4.007 kg) was 0.0112 ml/[g·min], equivalent to a metabolic heat production (MHP) of 14.9 Watt. The respiratory exchange ratio was approximately 0.7 at allT a. Values of were low at lowT a, but increased to 0.21 g/min at 30°C, equivalent to 0.3% of body mass/h. Dry conductance increased 3.5-fold between –20 and 30°C. Evaporative heat loss (EHL) comprised about 5% of MHP at lowT a, rising to 47% of MHP atT a=30°C. The means of ventilation parameters (tidal volume [VT], respiration frequency [f], minute volume [I], and oxygen extraction [ ]) were fairly stable between –20 and 10°C (VT did not change significantly over the entireT a range). However, there was considerable inter- and intra-individual variation in ventilation patterns. AtT a=20–30°C,f increased 7-fold over the minimal value of 7.6 breaths/min, and I showed a similar change. fell from 28–35% at lowT a to 6% atT a=30°C.Abbreviations C thermal conductance - EHL evaporative heat loss - oxygen extraction - f respiratory frequency - MHP metabolic heat production - evaporative water loss - LCT lower critical temperature - RE respiratory exchange ratio - T a ambient temperature - T b body temperature - rate of oxygen consumption - rate of carbon dioxide production - I inspiratory minute volume - VT tidal volume  相似文献   

15.
Summary The effects of ambient temperatures of 10°C and 30°C and of E. coli endotoxin on brain temperature and plasma iron level were investigated in unrestrained wild house mice, Mus musculus. In control animals (i.p. saline-injected) exposed to cold environmenta the brain temperature decreased and plasma iron levels were lower than those observed under thermoneutral conditions (30°C). Animals injected i.p. with endotoxin (0.5 g·kg-1) and placed at 30°C showed a drop in plasma iron level during the fever episode. The results provide strong evidence for a relationship between brain temperature and plasma iron level in control mice under thermoneutral conditions, and show that during cold exposure or after injection of endotoxin, there is no linear correlation between brain temperature and plasma iron. Moreover, it was found that cold stress influences plasma iron level and that this influence is not mediated by changes in brain temperature.Abbreviations EP endotoxin pyrogen - T A ambient temperature - T Br brain temperature - T Br change in T Br in relation to its initial value in feverish or control mice - T Br difference between T Br in feverish and control mice  相似文献   

16.
Summary The cold cell in the easily identified mound-shaped sensillum on the 12th segment ofCarausius morosus' antennae responds to downward temperature (T) steps from about 15 °C with a sharp rise in impulse frequency (F). Responses to similar steps from higher initial temperatures are smaller (Figs. 1, 3, 4). As initialT increases from 16 °C to 31 °C, differential sensitivity to downward steps falls off by a factor of 27: to yield an average increase inF of 1 imp/s, steps down from 31 °C must increase by 1.7 °C; steps down from 16 °C, by only 0.06 °C (Fig. 5). Resolving power forT-steps at mid-range initial temperatures is about 0.7 °C, i.e. the probability that a single cold cell at average differential sensitivity will correctly discriminate between twoT steps 0.7 °C apart is 90% when the cell is presented with each step just once.The same cold cell also displays a clear dependence on steadyt between 14 °C and 24 °C (Figs. 7, 8). The static discharge rate of a single cell at average differential sensitivity has a resolving power of about 0.9 °C for steadyT. — The static discharge is not affected by the amount of water vapor in the stimulating air (Fig. 9).Abbreviations F impulse frequency in impulses per second (imp/s) - Pw partial pressure of water vapor in torr - r correlation coefficient - T temperature in °C - T step change inT  相似文献   

17.
Summary The gas exchange characteristics of two C3 desert annuals with contrasting phenologies, Geraea canescens T. & G. (winter-active) and Dicoria canescens T. & G. (summer-active), both Asteraceae, were determined for plants grown under a moderate (25°/15° C, day/night temperature) and a high (40°/27° C) growth temperature regime. Both species had high photosynthetic capacities; maximum net photosynthetic rates were 38 and 48 mol CO2 m-2 s-1 for Geraea and Dicoria, respectively, and were not influenced by growth temperature regime. However, the temperature optima of net photosynthesis shifted from 26° C for Geraea and from 28° C for Dicoria when grown under the moderate temperature regime to 31° C for both species when grown under the high temperature regime. Although the shifts in temperature optima were smaller than those observed for many desert perennials, both species showed substantial increases in photosynthetic rates at high temperatures when grown at 40°/27° C. In general, the gas exchange characteristics of Geraea and Dicoria were very similar to each other and to those reported for other C3 desert annuals. Geraea and Dicoria experienced different seasonal patterns of change in several environmental variables. For Geraea, maximum daily air temperature (T a) increased from 24° to 41° C over its growing season while Dicoria experienced maximum T a at midseason (45° C). At points during their respective growing seasons when midday T a ranged between 35° and 40° C, leaf temperatures (T 1) of both species were below T a and, therefore, were closer to the photosynthetic temperature optima measured in the laboratory. Leaf conductances to water vapor (g 1) and water potentials () were high at these times, but later in their growing seasons Dicoria maintained high g 1 and while Geraea showed large decreases in these quantities. The ability of Dicoria to successfully growth through the hot, dry summers of the California deserts may be related to its ability to acquire the available water in locally mesic habitats.  相似文献   

18.
Summary The accumulation of interferon (IFN) -2 in transformed strains of Escherichia coli and Methylophilus methylotrophus was greater at 25° C than at 37° C. Interferon -2 catabolism was followed by measuring the change in IFN titre (measured immunoreactively) with time at temperatures between 25° C and 37° C in chloramphenicol-treated cells. The IFN -2 titre remained constant at 29° C and below, while at higher temperatures the titres declined. The t 1/2 values for IFN -2 decreased with increasing incubation temperature. Pulse-chase studies using [35S]methionine, sodium dodecyl sulphate-gel electrophoresis and autoradiography demonstrated that IFN -2 was subjected to degradation at 37° C while at 25° C it was stable. It is proposed that the susceptibility of IFN -2 to degradation in both E. coli and M. methylotrophus is affected by incubation temperature and 30° C may be a transition temperature above which the conformation of the molecule is recognised by the bacterial proteases.  相似文献   

19.
Homogeneity-time is defined and introduced as the criterion for mixing quality in bioreactors. The criterion could replace the mixing time, in the case, when more than one measuring point (sensors) is included in the measuring system. Results based on the homogeneity-time and the temperature pulse method, achieved in stirred tank reactors under aerated conditions as well as in a jet-mixed tank, are presented.List of Symbols C p,p kJ/kg K Heat capacity of the pulse medium - C p,s kJ/kg K Heat capacity of the reactor-medium - F m3/s Flow rate of the pulse-input - i Inhomogeneity - I N Inhomogeneity-number - M (t) °C Ideal response curve - m deNumber of combinations for certain number of sensors acc. to Table 1 - n Number of sensor - p kg/m3 Density of the pulse medium - kg/m3 Density of the tank medium - s 1 °C Mean absolute deviation of the sensor temperatures related on the ideal response curve s2 s Mean absolute deviation of the homogeneity-times related on the time achieved with 6 sensors - t s Time - t (i) s Homogeneity-time - t ps s Starting time of tracer injection - t PE s End time of tracer injection - T E °C Mean medium temperature at the end of experiment - T k °C Temperature at k-th sensor position - T p °C Pulse temperature - T s °C Mean medium temperature before the tracer injection - V s m3 Tank volume before pulse input  相似文献   

20.
Heat conditioning of cell homogenates of B. cereus and a recombinant E. coli was studied for the isolation of leucine dehydrogenase and alanine racemase, respectively. The strain of E. coli carried the gene of the thermostable alanine racemase from B. stearothermophilus. Activity loss can be minimized (<5%) and aggregation and flocculation of soluble proteins (70–80%) and other cell components can be achieved, depending on temperature, biomass concentration and pH-value.Thereby a 3–6 fold increase in specific activity was obtained. The resulting extract after solid-liquid separation showed lower viscosity and less turbidity than unheated controls, making it more suitable for chromatographic separations.List of Symbols ADH alcohol dehydrogenase - AlaR alanine racemase - BM % biomass concentration - D 1/s Shear rate - mPas viscosity - EF enrichment factor - LeuDH leucine dehydrogenase - KW heat rate - RA % remaining activity - RCF relative centrifugal force - RP % remaining protein - kg/dm3 density of homogenate - T F°C temperature of feed - T HI°C temperature of heating fluid (inlet) - T HO°C temperature of heating fluid (outlet) - K Pdm3/h volumetric flow rate of the feed The results presented are part of a dissertation (1988), carried out at the University of Düsseldorf, FRG  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号