首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of two enzymes mediating different pathways of ornithine catabolism were measured in liver and kidney of chronically uremic rats and their pair-fed controls. Two months following partial nephrectomy hepatic ornithine aminotransferase (OAT) activity tended to be lower in uremic rats and was correlated with urea clearance and with carbamoyl phosphate synthetase activity. Renal OAT activity in uremic rats was also correlated with urea clearance. When uremic rats were maintained for five months, OAT activity was significantly decreased in liver but not in kidney and the activity of ornithine decarboxylase (ODC), the enzyme regulating polyamine biosynthesis, was reduced in both liver and kidney. In cross-over experiments, evidence was obtained for a factor in uremic kidney cytosol which inhibited renal ODC activity.  相似文献   

2.
Different stages of liver regeneration are regulated by a variety of factors such as the liver growth associated protein ALR, augmenter of liver regeneration. Furthermore, small molecules like polyamines were proven to be essential for hepatic growth and regeneration. Therefore, using primary human hepatocytes in vitro we investigated the effect of ALR on the biosynthesis of polyamines. We demonstrated by HPLC analysis that recombinant ALR enhanced intracellular hepatic putrescine, spermidine, and spermine levels within 9-12h. The activation of polyamine biosynthesis was dose dependent with putrescine showing the strongest increase. Additionally, ALR treatment induced mRNA expression of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, both key enzymes of polyamine biosynthesis. Further, ALR induced c-myc mRNA expression, a regulator of ODC expression, and therefore we assume that ALR exerts its liver regeneration augmenting effects through stimulation of its signalling pathway leading in part to enhanced polyamine synthesis.  相似文献   

3.
4.
L Y Wing 《Life sciences》1990,47(14):1261-1267
Many hormones are known to induce the activity of ornithine decarboxylase (ODC), the first and rate-limiting enzyme for polyamine biosynthesis, in their target tissues. Using ovariectomized rats, we have compared the effects of sex hormones on ODC activity in the uterus and the kidney which contain estrogen and androgen receptors. The results show that 1) both estrogen and androgen stimulate renal ODC activity, 2) estrogen but not androgen effectively increases ODC activity in the uterus, 3) estrogen at higher dosage can stimulate renal ODC activity to an extent similar to that in the uterus, 4) daily treatment with estradiol for 5 days results in the desensitization of uterine ODC activity, but not that of renal ODC activity to the hormonal stimuli. Although both uterus and kidney are targets of sex hormones, our results indicate that estrogen and androgen have differential influences on the ODC activity in these two organs.  相似文献   

5.
General properties and relative activities of l-arginine decarboxylase (ADC) (EC 4.1.1.19) and l-ornithine decarboxylase (ODC) (EC 4.1.1.17), two important enzymes in putrescine and polyamine biosynthesis, were investigated in mung bean (Vigna radiata L.) tissues. Both activities increase linearly with increasing concentrations of crude enzyme, but the increase in ADC activity is considerably greater. The decarboxylation reaction is linear for up to 30 to 60 minutes, and both enzymes have a pH optimum of 7.2. alpha-Difluoromethyl-ornithine inhibits ODC activity of excised roots, while increasing ADC activity.High specific activity of both enzymes is detected in terminal buds and leaves, while root and hypocotyl activity is low. Different ADC-to-ODC activity ratios are found in various tissues of mung bean plants. Substantial increase in the activity of both enzymes is detected in incubated sections as compared with intact plants. A comparison of several plant species indicates a wide range of ADC-to-ODC activity ratio.It is suggested that both ADC and ODC are active in plant tissues and that their relative contribution to putrescine biosynthesis is dependent upon the type of tissue and growth process.  相似文献   

6.
We have measured the activities of the two rate controlling enzymes in polyamine synthesis, L-ornithine decarboxylase (ODC) and S-adenosyl-L-methionine decarboxylase (SAMDC), and the concentrations of the polyamines, putrescine, spermidine and spermine, in the developing chick embryo from laying to hatching. The embryo exhibited major peaks in the ODC and SAMDC activities as well as in the concentrations of all three polyamines at 15 h (gastrulation), 23-30 h (early organogenesis), days 4-5 (mid-organogenesis), and days 12-17 (organ growth and maturation). In the 4 and a half-day-old embryo, ODC activity and polyamine concentrations were about twice as high in the head region as compared to the trunk region. In the 14-day-old embryo, the highest ODC and SAMDC activities were found in lung, intestine and kidney, and there was a positive correlation between the enzyme activities and the growth rates of most organs/tissues.  相似文献   

7.
Ornithine decarboxylase (ODC) activity of rat tissues was measured by the standard 14CO2 trapping method after frozen storage (-60 or -70 degrees C) of the tissues or their 105,000g supernatants. True ODC activity was determined by two methods: (a) addition of the inhibitors alpha-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ODC, or aminooxyacetate (AOA), an inhibitor that blocks the decarboxylation of ornithine by mitochondrial enzymes; and (b) chromatographic analysis of the reaction products. In the frozen supernatants of liver and spleen, ODC activity changed only slightly after 1 day but increased 29 and 14%, respectively, by 30 days; activity in kidney supernatant decreased 17% after 1 day and remained near that level at 30 days. Kidney and spleen ODC activity was inhibited 90-100% by DFMO, but apparent liver ODC activity was inhibited only 60-75%. In the supernatant prepared from tissue stored frozen for 1 day, apparent ODC activity in liver increased 500% over that activity in the freshly prepared supernatant; at 23 days, apparent activity increased 755% for liver and 121% for kidney. After 23 days, DFMO did not inhibit apparent ODC activity in supernatants from frozen liver and inhibited ODC in frozen kidney by only 49%. With AOA, the ODC activities of the fresh and frozen supernatants were similar, indicating that the large increase in apparent ODC activity in frozen tissue was due to artifacts from the metabolism of ornithine via the mitochondrial pathway. HPLC analysis of the reaction products resulting from the incubation of uniformly labeled [14C]ornithine with the fresh and frozen preparations indicated no increase in putrescine with the frozen preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The role of ornithine decarboxylase (ODC) in polyamine metabolism has long been established, but the exact source of ornithine has always been unclear. The arginase enzymes are capable of producing ornithine for the production of polyamines and may hold important regulatory functions in the maintenance of this pathway. Utilizing our unique set of arginase single and double knockout mice, we analyzed polyamine levels in the livers, brains, kidneys, and small intestines of the mice at 2 wk of age, the latest timepoint at which all of them are still alive, to determine whether tissue polyamine levels were altered in response to a disruption of arginase I (AI) and II (AII) enzymatic activity. Whereas putrescine was minimally increased in the liver and kidneys from the AII knockout mice, spermidine and spermine were maintained. ODC activity was not greatly altered in the knockout animals and did not correlate with the fluctuations in putrescine. mRNA levels of ornithine aminotransferase (OAT), antizyme 1 (AZ1), and spermidine/spermine-N1-acetyltransferase (SSAT) were also measured and only minor alterations were seen, most notably an increase in OAT expression seen in the liver of AI knockout and double knockout mice. It appears that putrescine catabolism may be affected in the liver when AI is disrupted and ornithine levels are highly reduced. These results suggest that endogenous arginase-derived ornithine may not directly contribute to polyamine homeostasis in mice. Alternate sources such as diet may provide sufficient polyamines for maintenance in mammalian tissues. ornithine; putrescine; spermidine; spermine; decarboxylase  相似文献   

9.
Ornithine Decarboxylase (ODC) the first and probably rate-limiting step in polyamine biosynthesis, is usually elevated in tissues with high rates of growth or protein synthesis and in preweanling rat brain is altered by hormones thought to play a role in stress such as thyroxine and cortisol. Maternal deprivation stress was examined for its effect on preweanling rat brain ODC activity. Ten day old rat pups were removed from the maternal cage, then alternately returned to the mother or placed in a warm environment after the method of Hall. Pups taken from the mother for as little as 1 hour show a significant decline in their whole brian ODC activity. The effect peaked at 2–4 hours of deprivation, at which time the brain ODC activity was 60% below that of the equally handled littermate controls. Two hours of deprivation produced a similar effect throughout preweanling development. The effect occurred in all brain regions and also in heart. Return to mother reversed rapidly the deprivation-induced ODC decline, with ODC activity overshooting to 300% of control 2 hours after return, then declining to baseline by 4 hours. Putrescine, the immediate product of the ODC reaction, declined 15% one hour after deprivation, and 50% in brain and heart after 15 hours. These data demonstrate that maternal deprivation alters polyamine metabolism in preweanling rat brain and heart.  相似文献   

10.
11.
Arginase I (AI), the fifth and final enzyme of the urea cycle, detoxifies ammonia as part of the urea cycle. In previous studies from others, AI was not found in extrahepatic tissues except in primate blood cells, and its roles outside the urea cycle have not been well recognized. In this study we undertook an extensive analysis of arginase expression in postnatal mouse tissues by in situ hybridization (ISH) and RT-PCR. We also compared arginase expression patterns with those of ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT). We found that, outside of liver, AI was expressed in many tissues and cells such as the salivary gland, esophagus, stomach, pancreas, thymus, leukocytes, skin, preputial gland, uterus and sympathetic ganglia. The expression was much wider than that of arginase II, which was highly expressed only in the intestine and kidney. Several co-localization patterns of AI, ODC, and OAT have been found: (a) AI was co-localized with ODC alone in some tissues; (b) AI was co-localized with both OAT and ODC in a few tissues; (c) AI was not co-localized with OAT alone in any of the tissues examined; and (d) AI was not co-localized with either ODC or OAT in some tissues. In contrast, AII was not co-localized with either ODC or OAT alone in any of the tissues studied, and co-localization of AII with ODC and OAT was found only in the small intestine. The co-localization patterns of arginase, ODC, and OAT suggested that AI plays different roles in different tissues. The main roles of AI are regulation of arginine concentration by degrading arginine and production of ornithine for polyamine biosynthesis, but AI may not be the principal enzyme for regulating glutamate biosynthesis in tissues and cells.  相似文献   

12.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

13.
14.
Circadian variations of mouse liver, brain and heart lysosomal susceptibility to hypoxia were investigated. Lysosomal disruption during hypoxia was estimated on the basis of the following measurements: changes in percentage free activity of β-galactosidase and acid phosphatase, tissue loss of both lysosomal enzymes and accumulation of serum β-galactosidase. When exposure to hypoxia took place at the end of the rest phase or at the beginning of the active phase, it was accompanied by maximum increase of percent free activity. This, presumably represents a diffusion of enzymes from lysosomes due to altered membrane permeability. However, hypoxia when occurring during the second part of the active phase and first part of the rest phase resulted in tissues loss of lysosomal enzymes and accumulation of serum lysosomal enzymes. This is believed to represent the release of lysosomal enzymes in bulk from damaged or ruptured lysosomal membranes.  相似文献   

15.
16.
17.
Ornithine decarboxylase (ODC), a regulatory enzyme of polyamine biosynthesis, is involved in cell growth and differentiation. Lack of information about the exact cellular and subcellular localization of ODC is one of the main obstacles to precise interpretation of the biological roles of the ODC/polyamine system. Here we describe the development and optimization of an immunocytochemical method to detect ODC in cells and tissues. For this purpose a monoclonal antibody (MP16-2) against a defined epitope of ODC protein was developed. Specificity of the antibody for ODC was substantiated by Western blotting and ELISA analysis using cell and tissue homogenates. In cultured cells, optimal staining results were obtained after fixation with crosslinking fixatives followed by permeabilization with methanol. In rat tissues, ODC immunoreactivity was best preserved in paraffin sections fixed with Bouin's fixative. Antigen retrieval using SDS and citrate buffer substantially increased ODC immunostaining and decreased background staining. Localization studies of ODC in different cell lines showed that strongest staining for ODC was found in the nucleoplasm of mitotic cells, whereas confluent cells showed moderate perinuclear staining. Immunocytochemical studies of various rat tissues showed high cytoplasmic immunostaining of ODC in epithelial cells of kidney, prostate, and adrenal medulla of testosterone-treated rats, in glandular epithelium of small intestine, and in pancreas of neonatal and adult rats. (J Histochem Cytochem 47:1395-1404, 1999)  相似文献   

18.
The activities of arginine decarboxylase (ADC; EC 4.1.1.19) and ornithine decarboxylase (ODC; EC 4.1.1.17) as well as polyamine content were examined in Phaseolus vulgaris L. cv. Taylor's Horticultural before and during anthesis, during fruit development and throughout vegetative growth. The specific activities of polyamine biosynthetic enzymes were highest in all rapidly growing tissues, e.g., root apices, hypocotyls, young internodes, young leaves, flower buds, young pods and pericarps. They were lowest in mature, non-growing tissues. Similarly, the content of the major polyamines (putrescine, spermidine, spermine) is highest in rapidly growing tissues, and lowest in mature tissue. These correlations reinforce the growing connection between polyamines and rates of cell division and metabolic activity during both vegetative and reproductive development.  相似文献   

19.
The pattern of the activity of arginine decarboxylase (ADC) and omithine decarboxylase (ODC) involved in polyamine synthesis in ripening wheat seeds was examined. The aim was to study the polyamines and the activity of the two enzymes in correlation with the growth processes occurring in the developing wheat seeds. The results obtained showed a very different pattern of polyamine content in the two organs of caryopsis, and that the two enzymes in the embryos have a higher activity than in the endosperms. Moreover, while in the embryos the ADC exhibits higher activity than the ODC, in the endosperms the activity of ODC is about similar to that of ADC. This pattern is discussed in relation to the different histological characteristics of embryo and endosperm tissues during seed development.  相似文献   

20.
Ornithine decarboxylase (ODC; EC 4.1.1.17), transglutaminase (EC 2.3.2.13), diamine oxidase (DAO; EC 1.4.3.6) and total di- and poly-amines were studied in rat liver and kidney cortex throughout pregnancy. In liver, ODC activity exhibited two major peaks (4.5-5 times the control activities) on days 15 and 17. Also putrescine and spermidine increased biphasically (3-4-fold), but no variation in spermine content was observed. Transglutaminase activity showed slight variations only near the end of gestation. In kidney, ODC activity did not fluctuate significantly during pregnancy, whereas both transglutaminase activity and putrescine content showed three major increases, in very early, middle and late pregnancy. No significant variations in spermidine and spermine were observed. In both organs, DAO activity, very low or undetectable until day 10, dramatically increased (10- and 20-fold in kidney and liver respectively) in the second half of pregnancy, reaching maxima on days 16-17 and 19. The results obtained for transglutaminase, ODC and total di- and poly-amines are interpreted on the basis of hyperplastic and hypertrophic events in the liver and kidney respectively. The behaviour of DAO suggests that the enzyme plays an important role in the control of intracellular diamine concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号