首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We have previously demonstrated that ras-mediated skin tumorigenesis depends on signaling pathways that act preferentially through cyclin D1 and D2. Interestingly, the expression of cyclin D3 inhibits skin tumor development, an observation that conflicts with the oncogenic role of D-type cyclins in the mouse epidermis. Here, we show that simultaneous up and downregulation of particular members of the D-type cyclin family is a valuable approach to reduce skin tumorigenesis. We developed the K5D3/cyclin D1-/- compound mouse, which overexpresses cyclin D3 but lacks expression of cyclin D1 in the skin. Similar to K5D3 transgenic mice, keratinocytes from K5D3/cyclin D1-/- compound mice show a significant reduction of cyclin D2 levels. Therefore, this model allows us to determine the effect of cyclin D3 expression when combined with reduced or absent expression of the remaining two members of the D-type cyclin family in mouse epidermis. Our data show that induced expression of cyclin D3 compensates for the reduced level of cyclin D1 and D2, resulting in normal keratinocyte proliferation. However, simultaneous ablation of cyclin D1 and downregulation of cyclin D2 via cyclin D3 expression resulted in a robust reduction in ras-mediated skin tumorigenesis. We conclude that modulation of the levels of particular members of the D-type cyclin family could be useful to inhibit tumor development and, in particular, ras-mediated tumorigenesis.  相似文献   

2.
Rescue of cyclin D1 deficiency by knockin cyclin E.   总被引:29,自引:0,他引:29  
D-type cyclins and cyclin E represent two very distinct classes of mammalian G1 cyclins. We have generated a mouse strain in which the coding sequences of the cyclin D1 gene (Ccnd1) have been deleted and replaced by those of human cyclin E (CCNE). In the tissues and cells of these mice, the expression pattern of human cyclin E faithfully reproduces that normally associated with mouse cyclin D1. The replacement of cyclin D1 with cyclin E rescues all phenotypic manifestations of cyclin D1 deficiency and restores normal development in cyclin D1-dependent tissues. Thus, cyclin E can functionally replace cyclin D1. Our analyses suggest that cyclin E is the major downstream target of cyclin D1.  相似文献   

3.
The expression of retinoblastoma (pRb) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that cyclin D3 is nearly totally associated with hypophosphorylated pRb in differentiated myotubes, whereas Rb-/- myocytes fail to accumulate the cyclin D3 protein despite normal induction of cyclin D3 mRNA. Here we report that pRb promotes cyclin D3 protein accumulation in differentiating myoblasts by preventing cyclin D3 degradation. We show that cyclin D3 displays rapid turnover in proliferating myoblasts, which is positively regulated through glycogen synthase kinase 3beta (GSK-3beta)-mediated phosphorylation of cyclin D3 on Thr-283. We describe a novel interaction between pRb and cyclin D3 that maps to the C terminus of pRb and to a region of cyclin D3 proximal to the Thr-283 residue and provide evidence that the pRb-cyclin D3 complex formation in terminally differentiated myotubes hinders the access of GSK-3beta to cyclin D3, thus inhibiting Thr-283 phosphorylation. Interestingly, we observed that the ectopic expression of a stabilized cyclin D3 mutant in C2 myoblasts enhances muscle-specific gene expression; conversely, cyclin D3-null embryonic fibroblasts display impaired MyoD-induced myogenic differentiation. These results indicate that the pRb-dependent accumulation of cyclin D3 is functionally relevant to the process of skeletal muscle cell differentiation.  相似文献   

4.
5.
We have previously demonstrated that ras-mediated skin tumorigenesis depends on signaling pathways that act preferentially through cyclin D1 and D2. Interestingly, the expression of cyclin D3 inhibits skin tumor development, an observation that conflicts with the oncogenic role of D-type cyclins in the mouse epidermis. Here, we show that simultaneous up and downregulation of particular members of the D-type cyclin family is a valuable approach to reduce skin tumorigenesis. We developed the K5D3/cyclin D1−/− compound mouse, which overexpresses cyclin D3 but lacks expression of cyclin D1 in the skin. Similar to K5D3 transgenic mice, keratinocytes from K5D3/cyclin D1−/− compound mice show a significant reduction of cyclin D2 levels. Therefore, this model allows us to determine the effect of cyclin D3 expression when combined with reduced or absent expression of the remaining two members of the D-type cyclin family in mouse epidermis. Our data show that induced expression of cyclin D3 compensates for the reduced level of cyclin D1 and D2, resulting in normal keratinocyte proliferation. However, simultaneous ablation of cyclin D1 and downregulation of cyclin D2 via cyclin D3 expression resulted in a robust reduction in ras-mediated skin tumorigenesis. We conclude that modulation of the levels of particular members of the D-type cyclin family could be useful to inhibit tumor development and, in particular, ras-mediated tumorigenesis.Key words: cell cycle, D-type cyclins, skin, carcinogenesis, epidermis  相似文献   

6.
Cardiomyocytes withdraw from cell cycle after terminal differentiation due in part to impaired nuclear import of cyclin D1. Thus, we have previously shown that expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and cyclin-dependent kinase 4 promotes cardiomyocyte proliferation both in vitro and in vivo. Here we show that cyclin D2 fails to stimulate cell cycle in cardiomocytes through a mechanism distinct from that of cyclin D1. We demonstrate that cyclin D2 can express in the nucleus much more efficiently than cyclin D1. Cyclin D2, however, was much less effective in activating CDK2 and cell proliferation than cyclin D1 when expressed transiently in the nucleus of cardiomyocytes using nuclear localization signals. Consistent with such an observation, CDK inhibitors p21cip1 and p27kip1 remained bound to CDK2 in cells expressing cyclin D2, whereas p21 and p27 were sequestered to cyclin D1 in cells expressing D1NLS. These data suggest that cyclin D2 has weaker affinities to the CDK inhibitors and therefore is less efficient in activating cell cycle than cyclin D1. According to such a notion, double knockdown of p21 and p27 in cells expressing D2NLS induced activation of CDK2/CDC2 and BrdU incorporation to levels similar to those in cells expressing D1NLS. Taken together, our data suggest that distinct mechanisms keep cyclin D1 and cyclin D2 from activating cell cycle in terminally differentiated cardiomyocytes.  相似文献   

7.
8.
9.
Cyclin D1 is frequently overexpressed in human breast cancers, and cyclin D1 overexpression correlates with poor prognosis. Cyclin D1-Cdk2 complexes were previously observed in human breast cancer cell lines, but their role in cell cycle regulation and transformation was not investigated. This report demonstrates that Cdk2 in cyclin D1-Cdk2 complexes from mammary epithelial cells is phosphorylated on the activating phosphorylation site, Thr(160). Furthermore, cyclin D1-Cdk2 complexes catalyze Rb phosphorylation on multiple sites in vitro. As a model to investigate the biological and biochemical functions of cyclin D1-Cdk2 complexes, and the mechanisms by which cyclin D1 activates Cdk2, a cyclin D1-Cdk2 fusion gene was constructed. The cyclin D1-Cdk2 fusion protein expressed in epithelial cells was phosphorylated on Thr(160) and catalyzed the phosphorylation of Rb on multiple sites in vitro and in vivo. Kinase activity was not observed if either the cyclin D1 or Cdk2 domain was mutationally inactivated. Mutational inactivation of the cyclin D1 domain prevented activating phosphorylation of the Cdk2 domain on Thr(160). These results indicate that the cyclin D1 domain of the fusion protein activated the Cdk2 domain through an intramolecular mechanism. Cells stably expressing the cyclin D1-Cdk2 fusion protein exhibited several hallmarks of transformation including hyperphosphorylation of Rb, resistance to TGFbeta-induced growth arrest, and anchorage-independent proliferation in soft agar. We propose that cyclin D1-Cdk2 complexes mediate some of the transforming effects of cyclin D1 and demonstrate that the cyclin D1-Cdk2 fusion protein is a useful model to investigate the biological functions of cyclin D1-Cdk2 complexes.  相似文献   

10.
11.
Ubiquitination of cyclin D1 signals for its proteosomal degradation. To assess the possibility that reduced cyclin D1 proteolysis is a putative mechanism for its accumulation during UVB-induced skin tumorigenesis, ubiquitination activity of cyclin D1 was assessed in UVB-induced murine SCCs. Cyclin D1 was rapidly ubiquitinated by control skin extract, whereas ubiquitination of cyclin D1 was significantly reduced in SCCs. Mutant cyclin D1, in which residues important for GSK3beta-mediated degradation of cyclin D1 are altered to non-phosphorylatable alanine, was not ubiquitinated. We also observed phosphorylation-dependent inactivation of GSK3beta in SCCs. Our results indicate reduced ubiquitination of cyclin D1 in UVB-induced murine SCCs and suggest that inactivation of GSK3beta-dependent cyclin D1 degradation pathway contributes to the accumulation of cyclin D1 in UVB-induced murine SCCs.  相似文献   

12.
Our studies examined the effects of p27(kip1) and p21(cip1) on the assembly and activity of cyclin D3-cdk4 complexes and determined the composition of the cyclin D3 pool in cells containing and lacking these cyclin-dependent kinase inhibitors. We found that catalytically active cyclin D3-cdk4 complexes were present in fibroblasts derived from p27(kip1)-p21(cip1)-null mice and that immunodepletion of extracts of wild-type cells with antibody to p27(kip1) and/or p21(cip1) removed cyclin D3 protein but not cyclin D3-associated activity. Similar results were observed in experiments assaying cyclin D1-cdk4 activity. Data obtained using mixed cell extracts demonstrated that p27(kip1) interacted with cyclin D3-cdk4 complexes in vitro and that this interaction was paralleled by a loss of cyclin D3-cdk4 activity. In p27(kip1)-p21(cip1)-deficient cells, the cyclin D3 pool consisted primarily of cyclin D3 monomers, whereas in wild-type cells, the majority of cyclin D3 molecules were complexed to cdk4 and either p27(kip1) or p21(cip1) or were monomeric. We conclude that neither p27(kip1) nor p21(cip1) is required for the formation of cyclin D3-cdk4 complexes and that cyclin D3-cdk4 complexes containing p27(kip1) or p21(cip1) are inactive. We suggest that only a minor portion of the total cyclin D3 pool accounts for all of the cyclin D3-cdk4 activity in the cell regardless of whether the cell contains p27(kip1) and p21(cip1).  相似文献   

13.
Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes.   总被引:12,自引:0,他引:12  
Cyclin D1 is widely believed to regulate progression through G1 phase of the cell cycle, and previous studies have shown that this protein is induced during hepatocyte proliferation in culture and in vivo. In this study, the role of cyclin D1 in the cell cycle of primary rat hepatocytes was further examined. Following epidermal growth factor stimulation, cyclin D1 was upregulated at time points corresponding to the mitogen restriction point, and this was associated with enhanced cyclin D1-associated kinase activity. To test whether cyclin D1 expression was sufficient to promote mitogen-independent progression through the G1-S transition, we constructed a replication-defective adenovirus that overexpressed human cyclin D1. Transfection with the cyclin D1 vector but not a control vector resulted in hepatocyte DNA synthesis in the absence of growth factor that was similar to that seen in mitogen-treated cells. Furthermore, cyclin D1 transfection led to activation of downstream biochemical events, including cyclin A and proliferating cell nuclear antigen expression and cyclin E- and cyclin A-associated kinase activation. These results suggest that cyclin D1 expression is sufficient to promote progression of hepatocytes through the G1 restriction point.  相似文献   

14.
Chun T  Rho SB  Byun HJ  Lee JY  Kong G 《FEBS letters》2005,579(24):5275-5280
Considerable evidence supports the view that D-type cyclins play a role in G1-S progression. We found that cyclin D2 directly interacts with Mel-18, one of the polycomb group gene products in a yeast two hybrid screen. Further, we have determined the binding domains that are required for interaction between cyclin D2 and Mel-18. The proline/serine-rich domain (P/S domain) of Mel-18 is required to interact with cyclin D2, and the N-terminal region of cyclin D2 is necessary to interact with Mel-18. A co-localization study shows that cyclin D2 and Mel-18 interact within the nucleus. To determine whether Mel-18 affects cyclin D2 activity, we blocked Mel-18 expression using an anti-sense strand system in cyclin D2 over-expressing cells. The results indicate that cells with reduced Mel-18 expression levels show more proliferative activity than the controls. These findings are the first report that Mel-18 directly interacts with cyclin D2 and may inhibit cyclin D2 activity.  相似文献   

15.
The cyclin D-dependent kinase is a critical mediator of mitogen-dependent G1 phase progression in mammalian cells. Given the high incidence of cyclin D1 overexpression in human neoplasias, the nature and complexity of cyclin D complexes in vivo have been subjects of intense interest. Besides its catalytic partner, the nature and complexity of cyclin D complexes in vivo remain ambiguous. To address this issue, we purified native cyclin D1 complexes from proliferating mouse fibroblasts by affinity chromatography and began to identify and functionally characterize the associated proteins. In this report, we describe the identification of Hsc70 and its functional importance for cyclin D1 and cyclin D1-dependent kinase maturation. We demonstrate that Hsc70 associates with newly synthesized cyclin D1 and is a component of a mature, catalytically active cyclin D1/CDK4 holoenzyme complex. Our data suggest that Hsc70 promotes stabilization of newly synthesized cyclin D1, thereby increasing its availability for assembly with CDK4. In addition, our data demonstrate that Hsc70 remains bound to cyclin D1 following its assembly with CDK4 and Cip/Kip proteins, where it ensures the formation of a catalytically active complex.  相似文献   

16.
Growth factor-dependent accumulation of the cyclin D1 proto-oncogene is balanced by its rapid phosphorylation-dependent proteolysis. Degradation is triggered by threonine 286 phosphorylation, which promotes its ubiquitination by an unknown E3 ligase. We demonstrate that Thr286-phosphorylated cyclin D1 is recognized by a Skp1-Cul1-F box (SCF) ubiquitin ligase where FBX4 and alphaB crystallin govern substrate specificity. Overexpression of FBX4 and alphaB crystallin triggered cyclin D1 ubiquitination and increased cyclin D1 turnover. Impairment of SCF(FBX4-alphaB crystallin) function attenuated cyclin D1 ubiquitination, promoting cyclin D1 overexpression and accelerated cell-cycle progression. Purified SCF(FBX4-alphaB crystallin) catalyzed polyubiquitination of cyclin D1 in vitro. Consistent with a putative role for a cyclin D1 E3 ligase in tumorigenesis, FBX4 and alphaB crystallin expression was reduced in tumor-derived cell lines and a subset of primary human cancers that overexpress cyclin D1. We conclude that SCF(FBX4-alphaB crystallin) is an E3 ubiquitin ligase that promotes ubiquitin-dependent degradation of Thr286-phosphorylated cyclin D1.  相似文献   

17.
Cyclin/cyclin-dependent kinases (Cdks) are critical protein kinases in regulating cell cycle progression. Among them, cyclin D1/Cdk4 exerts its function mainly in the G1 phase. By using the tandem affinity purification tag approach, we identified a set of proteins interacting with Cdk4, including NDR1/2. Interestingly, confirming the interactions between NDR1/2 and cyclin D1/Cdk4, we observed that NDR1/2 interacted with cyclin D1 independent of Cdk4, but NDR1/2 and cyclin D1/Cdk4 did not phosphorylate each other. In addition, we found that NDR1/2 did not affect the kinase activity of cyclin D1/Cdk4 upon phosphorylation of GST-Rb. However, cyclin D1 but not Cdk4 promoted the kinase activity of NDR1/2. We also demonstrated that cyclin D1 K112E, which could not bind Cdk4, enhanced the kinase activity of NDR1/2. To test whether cyclin D1 promotes G1/S transition though enhancing NDR1/2 kinase activity, we performed flow cytometry analysis using cyclin D1 and cyclin D1 K112E Tet-On inducible cell lines. The data show that both cyclin D1 and cyclin D1 K112E promoted G1/S transition. Importantly, knockdown of NDR1/2 almost completely abolished the function of cyclin D1 K112E in promoting G1/S transition. Consistently, we found that the protein level of p21 was reduced in cells overexpressing cyclin D1 K112E but not when NDR1/2 was knocked down. Taken together, these results reveal a novel function of cyclin D1 in promoting cell cycle progression by enhancing NDR kinase activity independent of Cdk4.  相似文献   

18.
The cellular response to DNA damage induced by γ-irradiation activates cell-cycle arrest to permit DNA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1 and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles in the development of several human cancers. To study the regulation of cyclin D1 in the DNA-damaged condition, we analyzed the proteolytic regulation of cyclin D1 expression upon γ-irradiation. Upon γ-irradiation, a rapid reduction in cyclin D1 levels was observed prior to p53 stabilization, indicating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis revealed that irradiation facilitated ubiquitination of cyclin D1 and that a proteasome inhibitor blocked cyclin D1 degradation under the same conditions. Interestingly, after mutation of threonine residue 286 of cyclin D1, which is reported to be the GSK-3β phosphorylation site, the mutant protein showed resistance to irradiation-induced proteolysis although inhibitors of GSK-3β failed to prevent cyclin D1 degradation. Rather, ATM inhibition markedly prevented cyclin D1 degradation induced by γ-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required for maintenance of genomic integrity achieved by rapid arrest of the cell-cycle, and that disruption of this crosstalk may increase susceptibility to cancer.  相似文献   

19.
Long-term growth inhibition, arrest in G(1) phase and reduced activity of both cyclin D1-Cdk4 and cyclin E-Cdk2 are elicited by progestin treatment of breast cancer cells in culture. Decreased cyclin expression, induction of p18(INK4c) and increased association of the CDK inhibitors p21(WAF1/Cip1) and p27(Kip1) with cyclin E-Cdk2 have been implicated in these responses. To determine the role of decreased cyclin expression, T-47D human breast cancer cells constitutively expressing cyclin D1 or cyclin E were treated with the progestin ORG 2058. Overexpression of cyclin E had only a modest effect on growth inhibition. Although cyclin E expression was maintained during progestin treatment, cyclin E-Cdk2 activity decreased by approximately 60%. This was accompanied by p27(Kip1) association with cyclin E-Cdk2, indicating that both cyclin E down-regulation and p27(Kip1) recruitment contribute to the decrease in activity. In contrast, overexpression of cyclin D1 induced progestin resistance and cell proliferation continued despite decreased cyclin E-Cdk2 activity. Progestin treatment of cyclin D1-overexpressing cells was associated with increased p27(Kip1) association with cyclin E-Cdk2. Thus the ability of cyclin D1 to confer progestin resistance does not depend on sequestration of p27(Kip1) away from cyclin E-Cdk2, providing evidence for a critical function of cyclin D1 other than as a high-capacity "sink" for p27(Kip1). These data indicate that regulation of cyclin D1 is a critical element of progestin inhibition in breast cancer cells and suggest that breast cancers overexpressing cyclin D1 may respond poorly to progestin therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号