首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长爪沙鼠的遗传多样性分析   总被引:2,自引:0,他引:2  
利用17个微卫星DNA标记对Z:ZCLA长爪沙鼠封闭群、野生群和近交系进行遗传多样性分析, 评估群体内的遗传变异和群体间的遗传分化。结果表明:在Z:ZCLA封闭群和野生群中共有9个微卫星DNA标记获得稳定的结果, 分别为AF200940、AF200941、AF200942、AF200945、AF200946、AF200947、D11Mit128、PKC和 SCN, 共检测到41个等位基因, 每个基因的等位基因数从1~7不等, 片段大小在120~283 bp之间, 所有位点的平均期望杂合度(He)和多态信息含量(PIC)值分别为0.5032和0.4656, Z:ZCLA封闭群和野生群9个微卫星位点平均有效等位基因数分别为2.78和2.89, 平均基因杂合度分别为0.3704和 0.3893, 平均多态信息含量分别为0.3256和0.3344, 两个群体都表现为中度多态, Z:ZCLA封闭群较野生群稍低; 在3个近交系中共有8个位点获得稳定的扩增结果, 分别为AF200941、AF200942、AF200945、AF200946、AF200947、D11Mit128、PKC和 SCN, 共检测到11个等位基因, 片段大小在140~241 bp之间, 其中5个位点在群体内表现为单态纯合, 3个位点在群体内表现为单态杂合, 所有位点在群体内和群体间均呈单态性, 表明这3个长爪沙鼠品系基本符合近交系的要求, 微卫星标记技术适用于近交系长爪沙鼠的遗传检测。  相似文献   

2.
种间转移扩增法筛选长爪沙鼠微卫星位点   总被引:1,自引:0,他引:1  
目的筛选长爪沙鼠新的微卫星位点,为长爪沙鼠遗传分析提供遗传标记物。方法从GenBank中随机选取小鼠微卫星位点引物536对,用这些引物对长爪沙鼠基因组DNA扩增,将阳性目的条带进行序列分析,找出符合微卫星序列特征的短串联重复序列。结果 536对小鼠微卫星引物在长爪沙鼠基因组中扩增出了313个阳性条带,经序列分析,确定130个长爪沙鼠微卫星位点;其中完美型位点占80.77%(105/130),不完美型位点占19.23%(25/130),与小鼠同源性为24.3%(130/536)。将筛选出的微卫星位点在GenBank中注册,注册号从GU562694到GU562823。结论小鼠和沙鼠的微卫星位点具有较高的同源性,用小鼠的微卫星位点引物直接扩增长爪沙鼠基因组DNA可有效地筛选出长爪沙鼠微卫星位点。  相似文献   

3.
目的为了建立快速检测长爪沙鼠群体遗传多样性的方法及获得Z:ZCLA长爪沙鼠封闭群现用微卫星位点的结构。方法利用17个微卫星位点(9个来自长爪沙鼠,8个来自大小鼠)进行了PCR反应体系及反应条件的优化,组合了6组双重PCR及两个复合式点样,用上述8个组合对普通级Z:ZCLA长爪沙鼠封闭群43、444、5三个世代核心群各100只种鼠进行遗传检测。结果三个世代的300只种鼠的检测结果表明,9个长爪沙鼠位点均为微卫星,其中7个位点为完全型的微卫星,1个为复合型,1个为不完全型,多态性主要表现在核心序列的重复;来自大小鼠的8个微卫星位点,有7个在Z:ZCLA长爪沙鼠核心群中得到有效扩增,只有3个位点在三个世代中均有出现,对测序结果分析后发现,其核心序列均为小卫星。结论来自长爪沙鼠的位点,无论结构还是遗传方式均符合微卫星遗传标记的特点,可用作检测长爪沙鼠的群体遗传多样性。  相似文献   

4.
The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus)   总被引:2,自引:0,他引:2  
Genetic studies demonstrated three loci controlling coat colors in the Mongolian gerbil. F1 hybrids of white gerbils with red eyes and agouti gerbils with wild coat color had the agouti coat color. The segregating ratio of agouti and white in the F2 generation was 3:1. In the backcross (BC) generation (white x F1), the ratio of the agouti and white coat colors was 1:1. Next, inheritance of the agouti coat color was investigated. Matings between agouti and non-agouti (black) gerbils produced only agouti gerbils. In the F2 generation, the ratio of agouti to non-agouti (black) was 3:1. There was no distortion in the sex ratios within each coat color in the F1, F2 and BC generations. This indicated that the white coat color of gerbils is governed by an autosomal recessive gene which should be named the c allele of the c (albino) locus controlling pigmentation, and the agouti coat color is controlled by an autosomal dominant gene which might be named the A allele of the A (agouti) locus controlling pigmentation patterns in the hair. The occurrence of the black gerbil demonstrated clearly the existence of the b (brown) locus, and it clearly indicated that the coat colors of gerbils can basically be explained by a, b, and c loci as in mice and rats.  相似文献   

5.
Polaskia chichipe is a columnar cactus under artificial selection in central Mexico because of its edible fruits. Our study explored the effect of human manipulation on levels and distribution of genetic variation in wild, silviculturally managed and cultivated sympatric populations. Total genetic variation, estimated in nine populations with five microsatellite loci, was H(T) = 0.658 +/- 0.026 SE, which was mainly distributed within populations (H(S) = 0.646) with low differentiation among them (F(ST) = 0.015). Fixation index (F(IS)) in all populations was positive, indicating a deficit of heterozygous individuals with respect to Hardy-Weinberg expectations. When populations were pooled by management type, the highest expected heterozygosity (H(E) = 0.631 +/- 0.031 SE) and the lowest fixation index (F(IS) = 0.07) were observed in wild populations, followed by cultivated populations (H(E) = 0.56 +/- 0.03 SE, F(IS) = 0.14), whereas the lowest variation was found in silviculturally managed populations (H(E) = 0.51 +/- 0.05 SE, F(IS) = 0.17). Low differentiation among populations under different management types (F(ST) 0.005, P < 0.04) was observed. A pattern of migration among neighbouring populations, suggested from isolation by distance (r2 = 0.314, P < 0.01), may have contributed to homogenizing populations and counteracting the effects of artificial selection. P. chichipe, used and managed for at least 700 generations, shows morphological differentiation, changes in breeding system and seed germination patterns associated with human management, with only slight genetic differences detected by neutral markers.  相似文献   

6.
蒙新区子午沙鼠种群的遗传多样性和遗传结构   总被引:1,自引:0,他引:1  
黄翔  周立志 《兽类学报》2012,32(3):179-187
为了探讨蒙新干旱区景观和环境因素对子午沙鼠种群遗传结构的影响,我们利用8 个多态性的微卫星位点,对子午沙鼠14 个局域种群的160 个个体进行了种群遗传多样性和遗传结构的分析。微卫星结果显示种群具有高的遗传多样性,微卫星位点的等位基因数(A)为22. 50 ±3.02 (19 ~ 28),多态信息含量(PIC)为0.912 ±0. 02 (0.872 ~ 0. 929);种群观测杂合度(HO )为0.68 ± 0. 19 (0. 52 ~0.85),期望杂合度(HE )为0.79 ± 0. 08(0. 71 ~ 0.85)。分子变异分析(AMOVA)结果显示,所得到的3 个组之间已发生显著的遗传分化(P < 0. 001)。
Mantel 检测结果表明,子午沙鼠种群遗传结构与地理距离无显著的相关性(P = 0.270 0),而在多元线性模型中,蒙新干旱区的海拔高度是影响种群遗传结构的关键因素。  相似文献   

7.
Social behavior can shape the local population genetic structure of mammals. Group living can increase pairwise genetic relatedness of mammals at a local level but differentiate the genetic structure at a population level through offspring philopatry and nonrandom mating. Our study aimed to test the hypothesis that social groups of Mongolian gerbils (Meriones unguiculatus) would consist of genetically related individuals due to offspring philopatry and would have distinct genetic structures because of restricted gene flow among social groups and nonrandom mating. We genotyped 327 wild gerbils, live captured from 28 social groups in Inner Mongolia, China, using nine microsatellite loci. The within-group pairwise genetic relatedness coefficient averaged 0.28 ± 0.14 (standard deviation), whereas the average pairwise genetic relatedness coefficient of the whole gerbil population was 0.0 ± 0.2. Additionally, the value of the global F statistic (F(st)) was 0.21, suggesting a substantial genetic differentiation among social groups of Mongolian gerbils. The Bayesian clustering divided the 327 gerbils into 23 distinct genetic clusters. Therefore, our results show that high within-group genetic relatedness and among-group genetic differentiation are the genetic consequences of group living in social mammals because of restricted gene flow, female philopatry, and nonrandom mating within social groups.  相似文献   

8.
Freeze-fracture studies on the tight junction of ependymal cells in the gerbil and mouse subcommissural organ (SCO) show an obvious species-specific variation. The tight junctional structure of the mouse SCO is composed of several strands (7.03 +/- 2.09 strands/cell) and occupies a total depth of 0.88 +/- 0.16 micron with a linear density of 7.12 +/- 2.11 strands/micron. The tight junction of the gerbil SCO is composed of three regions: (1) an apical region: made of 4 to 6 strands, oriented parallel to the free surface, with a high linear density (21.78 +/- 3.98 strands/micron) and small depth (0.049 +/- 0.009 micron); (2) a rather smooth and/or empty intermediate region, and (3) a basal region similar in morphology and morphometry to the junctional area of mouse SCO. These data indicate that the main difference in the SCO tight junction between the gerbil and the mouse is the presence of an apical region of high strand density in the former. We speculate that this apical region may play a role in maintaining the homeostasis of this CNS region in gerbils and possibly other desert animals, and may be part of a mechanism for survival in an extremely dry environment.  相似文献   

9.
Heterozygosity at nine genetic loci (PI, TF, PGM1, ACP1, HP, GC, GLO1, C3, and ESD) was analyzed in pulmonary tuberculosis patients with good (group 1, N = 71) and poor (group 2, N = 35) response to treatment. The observed heterozygosities were compared with the expected values, which were calculated from allele frequencies in a control sample of healthy individuals (N = 328 with all but one locus and 78 with ESD) according to Hardy-Weinberg expectations. The analysis showed that the observed heterozygosities gl of patients significantly differed from the expected values hl in the case of four loci (GC, PI, C3, and ACP1). The observed heterozygosity was higher than expected in three cases (PI, C3, and ACP1) and lower then expected (GC) in one case. When data on each individual locus were compared using Fisher's exact test, both groups of patients proved to significantly differ (PF < 0.05) from the control group in the same four loci. No difference in observed heterozygosity was detected between the two groups of patients. The mean expected heterozygosity was h = 0.386 +/- 0.00674; the mean observed heterozygosity was g = 0.415 +/- 0.02 in group 1, g = 0.402 +/- 0.026 in group 2, and g = 0.371 +/- 0.00955 in the control group. The t test did not reveal a significant difference between the mean values of expected observed heterozygosities. Heterozygosity at individual loci, rather than mean heterozygosity, was proposed as an integral nonspecific indicator of the genetic control of a disease, because the former directly implicates individual marker loci in the development of a disorder, whereas effects of individual loci may eliminate each other when mean heterozygosity is computed. Based on the results obtained, a genetic control was assumed for the development of the tuberculosis process in the lungs.  相似文献   

10.
The aim of this paper is to examine the extent to which increment of heterozygosity in F1 crosses can be predicted from genetic distance of parental breeds. For this purpose, 38 polymorphic marker loci (blood groups, allotypes, polymorphic proteins and enzymes) were tested in 1115 purebred animals (Duroc, Hampshire and Czech Meat Pig as sire breeds; Landrace, Large White and Black Pied Přeštice as dam breeds) and in 1428 crossbred animals of the resulting nine crossbred groups. The number of animals in each genetic group ranged from 75 to 230. On the basis of the allele frequencies of the scored loci, three measures of genetic diversity (heterozygosity, standardized heterozygosity, effective number of alleles) were calculated in all 15 genetic groups. Furthermore, two measures of genetic distance (Nei's standard genetic distance and Gregorius' absolute genetic distance) were calculated between the parental populations. High correlations (Pearson product-moment correlation 0.62 to 0.73; Spearman rank correlation 0.58 to 0.85) were found between the increment of heterozygosity in the crosses (in relation to the mean of the heterozygosities of parental populations) and the genetic distance between the parental populations.  相似文献   

11.
Z:ZCLA长爪沙鼠微卫星标记的遗传多态性研究   总被引:6,自引:0,他引:6  
通过对9个微卫星座位的扩增,研究了Z:ZCLA长爪沙鼠的遗传多态性。结果表明,Z:ZCLA长爪沙鼠在其中1个位点上只有一个等位基因,在其它位点上均有2~4个等位基因,平均等位基因数2.6个。平均杂合度0.4684,平均多态信息量0.4166,平均有效等位基因数2.1756。全群基因纯合度从0.1111~0.5555,平均0.3389,提示目前本群遗传多样性水平处于中度多态。  相似文献   

12.
Recently a Mongolian gerbil has become a useful laboratory animal, while little of the basic data are known about the breeding and growth of this laboratory rodent. In our animal center, an inbred strain of the seizure prone gerbil has been produced and kept these ten years. The data on the breeding and growth of the animal were obtained and described as following in the present paper. The mean life span was 26 +/- 14 month old for males and 27 +/- 13 month old for females. The mean body weight of the Mongolian gerbils at 16 weeks of age was 72 +/- 5.6 g for males and 62 +/- 7.3 g for females. The mean litter size at birth was 4.8 +/- 1.7 head. (range; 1-9) More newborn pups were born in the warm seasons (March-October) than the cold seasons (November-February). The mean rate of weaning was 80.2%. The man litter size was relatively constant in each generation.  相似文献   

13.
Lee SB  Oh YJ  Chung JK  Jeong JH  Lee SD  Park DK  Park KH  Ko JS  Kim DS 《BMB reports》2011,44(9):566-571
Although the phospholipase C (PLC)β-1 isoform is associated with spontaneous seizure and distinctively expressed in the telencephalon, the distribution of PLCβ-1 expression in the epileptic gerbil hippocampus remains controversial. Therefore, we determined whether PLCβ-1 is associated with spontaneous seizure in an animal model of genetic epilepsy. In the present study, PLCβ-1 immunoreactivity was down-regulated in seizure-sensitive (SS) gerbils more than in seizure-resistant (SR) gerbils. The expression of PLCβ-1 within calretinin (CR)- positive neurons was rarely detected within the dentate hilar region of SS gerbils. PLCβ-1 immunoreactivity in the hippocampus was significantly elevated as compared to that in pre-seizure SS gerbil 3 h post-ictal. These findings suggest that alterations in PLCβ-1 immunoreactivity in the SS gerbil hippocampus may be closely related to the epileptic state of the gerbil brain and transiently elevated PLCβ-1 protein levels following seizure episodes. Such alterations may be compensatory responses in the SS gerbil hippocampus.  相似文献   

14.
15.
Although microsatellites are one of the most popular tools in genetic studies, their mutational dynamics and evolution remain unclear. Here, we apply extensive pedigree genotyping to identify and analyze the patterns and factors associated with de novo germline mutations across nine microsatellite loci in a wild population of lesser kestrels (Falco naumanni). A total of 10 germline mutations events were unambiguously identified in four loci, yielding an average mutation rate of 2.96x10(-3). Across loci, mutation rate was positively correlated with locus variability and average allele size. Mutations were primarily compatible with a stepwise mutation model, although not exclusively involved single-step changes. Unexpectedly, we found an excess of maternally transmitted mutations (male-to-female ratio of 0.1). One of the analyzed loci (Fn2.14) resulted hypermutable (mutation rate=0.87%). This locus showed a size-dependent mutation bias, with longer alleles displaying deletions or additions of a small number of repeat than shorter alleles. Mutation probability at Fn2.14 was higher for females and increased with parental (maternal) age but was not associated with individual physical condition, multilocus heterozygosity, allele length or allele span. Overall, our results do not support the male-biased mutation rate described in other organisms and suggest that mutation dynamics at microsatellite loci are a complex process which requires further research.  相似文献   

16.
太平洋牡蛎养殖与野生群体遗传变异的微卫星研究   总被引:3,自引:0,他引:3  
于红  李琪 《遗传学报》2007,34(12):1114-1122
应用微卫星标记技术研究5个中国太平洋牡蛎养殖群体和2个日本太平洋牡蛎野生群体的遗传变异。研究中所使用的7个微卫星位点在养殖和野生群体中都显示出了高多态性,平均等位基因数为19.1~29.9,平均期待杂合度为0.916~0.958。养殖群体和野生群体的平均等位基因丰度及观察杂合度没有显著性差异。遗传分化系数及等位基因杂合度分析显示所有的群体间都有显著性差异。构建的NJ树中,7个群体聚为3支,养殖群体和野生群体可以清楚地分开,在养殖群体中又分为南北两支。分配检验中,97%~100%的正确率证明了微卫星标记在群体识别分析中的可行性。本研究结果对太平洋牡蛎管理模式的设计和选择育种具有重要意义。  相似文献   

17.
The black-footed ferret (Mustela nigripes) is an endangered North American carnivore that underwent a well-documented population bottleneck in the mid-1980s. To better understand the effects of a bottleneck on a free-ranging carnivore population, we used 24 microsatellite loci to compare genetic diversity before versus during the bottleneck, and compare the last wild population to two historical populations. We also compared genetic diversity in black-footed ferrets to that of two sibling species, the steppe polecat (Mustela eversmanni) and the European polecat (Mustela putorius). Black-footed ferrets during the bottleneck had less genetic diversity than steppe polecats. The three black-footed ferret populations were well differentiated (F(ST) = 0.57 +/- 0.15; mean +/- SE). We attributed the decrease in genetic diversity in black-footed ferrets to localized extinction of these genetically distinct subpopulations and to the bottleneck in the surviving subpopulation. Although genetic diversity decreased, female fecundity and juvenile survival were not affected by the population bottleneck.  相似文献   

18.
The amplified fragment length polymorphism (AFLP) technique has been increasingly employed for characterizing inbred breeds of animals and detecting strain-specific polymorphisms. The majority of animals studies conducted in biomedical research are performed on rodent species, among which laboratory-reared Mongolian gerbils can be included. Despite the wide use of gerbils in scientific studies, their genetics has rarely been studied. Therefore we investigated the genetic differentiation of laboratory bred gerbils by means of AFLP markers. Six EcoRI/TaqI primer combinations were selected among 13 different combinations to assess the genetic polymorphisms in four stocks of animals: Charles River (CR), Harlan (Ha), Parma (Pr), and Crossbred (Cb). CR and Ha gerbils were purchased from commercial vendors, while Pr and Cb were derived from animals bred in our animal colony. A total of 228 fragments ranging between 70 and 650 bp were obtained. The mean percentage of polymorphic loci across primer combinations was 7.5%. Calculation of genetic distances through application of different algorithms (Nei's, BSI, and Jaccard's indexes) confirmed the poor genetic diversity between stocks. Nevertheless, a differentiation of the Pr and Cb stocks from the more homogeneous CR and Ha was revealed, in agreement with the different breeding derivation and management of the stocks.  相似文献   

19.
1. The gerbil (Gerbillus campestris) is a desert rodent able to tolerate high (38 degrees C) and low (-20 degrees C) ambient temperatures, probably due to both its low resting metabolic rate in hot environment and its high peak metabolic rate in cold. 2. Measurement of mitochondrial state IV respiration and cytochrome-oxidase activity (COX) were made in interscapular brown adipose tissue (IBAT), liver and hind limb muscles of gerbils and mice of nearly equal body mass, acclimated for 4 weeks at cold ambient temperature (CA) or reared at thermoneutrality (TN). 3. The most striking difference between these two animal species appears to be in IBAT mitochondria: in TN animals, the level of state IV respiration and COX activity was lower in gerbils than in mice, but the cold acclimation-induced increase in these parameters was greater in gerbils than in mice. 4. Alternatively, in gerbils as in mice, cold acclimation induced a reduction in muscle mitochondrial COX activity. No important change due to cold acclimation was observed in liver mitochondria, either in gerbils or in mice. 5. As compared with mice, the lower state IV respiration in IBAT mitochondria from TN gerbils may explain their low RMR, whereas the higher COX activity of IBAT mitochondria from CA gerbils may explain their higher PMR. 6. As a result of this great adaptability of BAT mitochondria, the gerbil seemed to be able to live in a wide range of ambient temperatures in its natural habitat.  相似文献   

20.
Electrophoretic variation within and between North Atlantic minke whale samples(Balaenoptera acutorostrata) from West Greenland, Iceland, and Norway was investigated. In the West Greenland samples, 28 enzyme systems were examined, representing 36 loci, of which 6 were found to be polymorphic. In Icelandic and Norwegian samples, 22 enzyme systems were examined, representing 29 loci, of which 6 and 5 were found to be polymorphic, respectively. The average heterozygosity was 0.058 (SE=0.024) in samples from West Greenland, 0.074 (SE=0.028) in samples from Iceland, and 0.054 (SE=0.023) in samples from Norway. No significant deviations from the expected Hardy—Weinberg genotypic frequencies, within samples taken from the same area, were found. Significant differences in allele frequencies were observed, however, between samples from the three different areas. The average Nei's genetic distance was 0.014 and the averageF st value was 0.126. The genetic differences between the samples from the different areas indicate that those from West Greenland, Iceland, and Norway represented different breeding populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号