首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pear (Pyrus sp.) is a major fruit crop of temperate regions with increasing extent of cultivation. Pear flavonoids contribute to its fruit color, pathogen defense, and are health beneficial ingredients of the fruits. Comparative Southern analyses with apple (Malus x domestica) cDNAs showed comparable genomic organization of flavonoid genes of both related genera. A homology-based cloning approach was used to obtain the cDNAs of most enzymes of the main flavonoid pathway of Pyrus: phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase, flavanone 3β-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, leucoanthocyanidin reductase 1 and 2, anthocyanidin synthase, anthocyanidin reductase, and UDP-glucose : flavonoid 7-O-glucosyltransferase. The substrate specificities of the recombinant enzymes expressed in yeast were determined for physiological and non-physiological substrates and found to be in general agreement with the characteristic pear flavonoid metabolite pattern of mainly B-ring dihydroxylated anthocyanins, flavonols, catechins, and flavanones. Furthermore, significant differences in substrate specificities and gene copy numbers in comparison to Malus were identified. Cloning of the cDNAs and studying the enzymes of the Pyrus flavonoid pathway is an essential task toward a comprehensive knowledge of Pyrus polyphenol metabolism. It also elucidates evolutionary patterns of flavonoid/polyphenol pathways in the Rosaceae, which allocate several important crop plants.  相似文献   

2.
The full-length cDNAs of eight S ribonucleases (S-RNases) were cloned from stylar RNA of European pear cultivars that could not be characterized by the cleaved amplified polymorphic sequences (CAPS) marker system for genotyping European pear cultivars harboring nine S alleles Sa, Sb, Sd, Se, Sh, Sk, Sl, Sq, and Sr. Comparison of the nucleotide sequences between these cDNAs and six putative S-RNase alleles previously amplified by genomic PCR revealed that five corresponded to the putative Sc-, Si-, Sm-, Sn-, and Sp-RNase alleles and the other three corresponded new S-RNase alleles (designated as putative Sg-, Ss-, and St-RNase alleles). Genomic PCR with a new set of primers was used to amplify 17 S-RNase alleles: 1906 bp (Sg), 1642 bp (St), 1414 bp (Sl), ca. 1.3 kb (Sk and Sq), 998 bp (Se), 440 bp (Sb), and ca. 350 bp (Sa, Sc, Sd, Sh, Si, Sm, Sn, Sp, Sr, and Ss). Among them, S-RNase alleles of similar size were discriminated by digestion with 11 restriction endo-nucleases. The PCR amplification of 17 S-RNase alleles following digestion with the restriction endonucleases provided a new CAPS marker system for rapid S-genotyping of European pear cultivars harboring 17 S alleles. Using the CAPS analysis, Sc, Sg, Si, Sm, Sn, Sp, Ss, and St alleles were found in 32 cultivars, which were classified into 23 S-genotypes.  相似文献   

3.
The first intraspecific linkage map of the lentil genome was constructed with 114 molecular markers (100 RAPD, 11 ISSR and three RGA) using an F2 population developed from a cross between lentil cultivars ILL5588 and ILL7537 which differed in resistance for ascochyta blight. Linkage analysis at a LOD score of 4.0 and a maximum recombination fraction of 0.25 revealed nine linkage groups comprising between 6 and 18 markers each. The intraspecific map spanned a total length of 784.1 cM. The markers were distributed throughout the genome, however markers were clustered in the middle or near the middle of the linkage groups, suggesting the location of centromeres. Of 114 mapped markers, 16 (14.0%) were distorted, usually at the end or middle of the linkage groups. The utility of ISSR and RGA markers for mapping in lentil was explored, and the primer with an (AC) repeat motif was found to be useful.Communicated by H.C. Becker  相似文献   

4.
The first successful attempt to produce stably transformed castor plants through direct gene transfer using particle gun (BioRad) is described. Decotyledonated embryos from mature seeds were germinated and the embryonic axis was induced to proliferate on Murashige and Skoog (MS) medium supplemented with 0.5 mg l(-1) thidiazuron (TDZ) and subjected to bombardment after 5-7 days of pre-incubation. The physical parameters for transient transformation were optimized using the UidA gene encoding beta-glucuronidase (GUS) as the reporter gene and with hygromycin-phosphotransferase (hptII) gene as selectable marker. Statistical analysis revealed that helium pressure, target distance, osmoticum, microcarrier type and size, DNA quantity, explant type and number of bombardments had significant influence on transformation efficiency, while the effect of genotype was non-significant. Of the different variables evaluated, embryonic axes from mature seeds, a target distance of 6.0 cm, helium pressure of 1,100 psi, 0.6 mum gold microcarriers, single time bombardment and with both pre- and post-osmoticum were found ideal. Selection of putative transformants was done on MS medium supplemented with 0.5 mg l(-1) BA and hygromycin (20, 40 and 60 mg l(-1)) for 3 cycles. The stable integration of the incorporated gene into castor genome was confirmed with PCR and Southern analysis of T(0) and T(1) plants. Transformation frequency in terms of plants grown to maturity and showing the presence of the introduced genes was 1.4%. The present results demonstrate the possibility of transformation of embryonic meristematic tissues of castor through particle delivery system.  相似文献   

5.
Aluminium (Al) tolerance in barley is conditioned by the Alp locus on the long arm of chromosome 4H, which is associated with Al-activated release of citrate from roots. We developed a high-resolution map of the Alp locus using 132 doubled haploid (DH) lines from a cross between Dayton (Al-tolerant) and Zhepi 2 (Al-sensitive) and 2,070 F2 individuals from a cross between Dayton and Gairdner (Al-sensitive). The Al-activated efflux of citrate from the root apices of Al-tolerant Dayton was 10-fold greater than from the Al-sensitive parents Zhepi 2 and Gairdner. A suite of markers (ABG715, Bmag353, GBM1071, GWM165, HvMATE and HvGABP) exhibited complete linkage with the Alp locus in the DH population accounting 72% of the variation for Al tolerance evaluated as relative root elongation. These markers were used to map this genomic region in the Dayton/Gairdner population in more detail. Flanking markers HvGABP and ABG715 delineated the Alp locus to a 0.2 cM interval. Since the HvMATE marker was not polymorphic in the Dayton/Gairdner population we instead investigated the expression of the HvMATE gene. Relative expression of the HvMATE gene was 30-fold greater in Dayton than Gardiner. Furthermore, HvMATE expression in the F2:3 families tested, including all the informative recombinant lines identified between HvGABP and ABG715 was significantly correlated with Al tolerance and Al-activated citrate efflux. These results identify HvMATE, a gene encoding a multidrug and toxic compound extrusion protein, as a candidate controlling Al tolerance in barley.  相似文献   

6.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

7.
Low-molecular-weight glutenin subunits (LMW-GS) have great effect on wheat processing quality, but were numerous and difficult to dissect by SDS-PAGE. The development of functional markers may be the most effective way for a clear discrimination of different LMW-GS genes. In the present study, three different approaches were used to identify SNPs of different genes at Glu-D3 and Glu-B3 loci in bread wheat for the development of six STS markers (3 for Glu-D3 and 3 for Glu-B3 genes) that were validated with distinguished wheat cultivars. Firstly, seven LMW-GS gene sequences ( AY585350, AY585354, AY585355, AY585356, AY585349, AY585351 and AY585353 ) from Aegilops tauschii, the diploid donor of the D-genome of bread wheat, were chosen to design seven pairs of AS-PCR primers for Glu-D3 genes. By amplifying the corresponding genes from five bread wheat cultivars with different Glu-D3 alleles (a, b, c, d and e) and Ae. tauschii, a primer set, S13F2/S13R1, specific to the gene AY585356, was found to be positive to cultivars with alleles Glu-D3c and d. Nevertheless, the other five pairs of primers designed from AY585350, AY585349, AY585353, AY585354 and AY585355, respectively, did not produce specific PCR products to the cultivars tested. Secondly, all the PCR products from the five primer sets without specific characteristics were sequenced and an SNP from the gene AY585350 was detected in the cultivar Hartog, which resulted in the second STS marker S1F1/S1R3 specific to the allelic variant of AY585350. Thirdly, three Glu-D3 sequences (AB062851, AB062865 and AB062872) and three Glu-B3 sequences (AB062852, AB062853 and AB062860) defined by Ikeda et al. (2002) were chosen to query wheat EST and NR databases, and DNA markers were developed based on the putative SNPs among the sequences. Using this approach, four STS markers were developed and validated with 16-19 bread wheat cultivars. The primer set T1F4/T1R1 was also a Glu-D3 gene-specific marker for AB062872, while T2F2/T2R2, T5F3/T5R1 and T13F4/T13R3 were all Glu-B3 gene specific markers for AB062852, BF293671 and AY831800, respectively. The chromosomal locations of the six markers were verified by amplifying the genomic DNA of Ae. tauschii (DD), T. monococcum (AA) and T. turgidum (AABB) entries, as well as Chinese Spring and its group 1 chromosome nulli-tetrasomic lines. The results are useful to discriminate the corresponding Glu-D3 and Glu-B3 genes in wheat breeding programs.  相似文献   

8.
Gametophytic self-incompatibility, a natural mechanism occurring in pear and other fruit-tree species, is usually controlled by the S-locus with allelic variants ( S1, S2, Sn). Recently, biochemical and molecular tools have determined the S-genotype of cultivars in various species. The present study determined the S-locus composition of ten European pear cultivars via S-PCR molecular assay, thereby obviating time-consuming fieldwork whose results are often ambiguous because of environmental effects. To verify the S-PCR assay, two putative S-allele DNA fragments of Japanese pear were isolated; their sequences proved to be identical to those reported in the databank. Six S-allele fragments of European pear were then sequenced. While field data confirmed the molecular results, fully and half-compatible field crosses were not distinguishable.  相似文献   

9.
We constructed a genetic linkage map based on a cross between two Swiss winter wheat (Triticum aestivum L.) varieties, Arina and Forno. Two-hundred and forty F5 single-seed descent (SSD)-derived lines were analysed with 112 restriction fragment length polymorphism (RFLP) anonymous probes, 18 wheat cDNA clones coding for putative stress or defence-related proteins and 179 simple-sequence repeat (SSR) primer-pairs. The 309 markers revealed 396 segregating loci. Linkage analysis defined 27 linkage groups that could all be assigned to chromosomes or chromosome arms. The resulting genetic map comprises 380 loci and spans 3,086 cM with 1,131 cM for the A genome, 920 cM for the B genome and 1,036 cM for the D genome. Seventeen percent of the loci showed a significant (P < 0.05) deviation from a 1:1 ratio, most of them in favour of the Arina alleles. This map enabled the mapping of QTLs for resistance against several fungal diseases such as Stagonospora glume blotch, leaf rust and Fusarium head blight. It will also be very useful for wheat genetic mapping, as it combines RFLP and SSR markers that were previously located on separate maps. S. Paillard and T. Schnurbusch contributed equally to the work  相似文献   

10.
This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs, 2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated: callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R.  相似文献   

11.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

12.
Summary A protocol for large-scale propagation of Phragmites communis Trin. by adventitious bud formation and plant regeneration was established. Adventitious buds were induced through either the indirect pathway or the direct pathway from stem explants of Phragmites communis. In the indirect pathway, it was essential to decrease the level of 2,4-dichlorophenoxyacetic acid from 9.1 to 0.5 μM to induce adventitious buds and achieve plant regeneration. In the direct pathway, the effects of different benzylaminopurine (BA) concentrations in the medium, and different positions of the explants, on adventitious bud formation were determined. Murashige and Skoog (MS) medium supplemented with 5.4μM α-naphthaleneacetic acid (NAA) and 53.4 μM BA, and the bottom part of stem explants were most responsive for the differentiation of adventitious shoot buds. The highest differentiation frequency was 20–30 adventitious shoot buds per stem node tissue. Elongation and proliferation of adventitious buds were achieved on MS medium supplemented with 13.3 μM BA and 5.4 μM NAA. Shoots were rooted in liquid half-strength MS medium with 5.4 μM NAA+4.9 μM indole-3-butyric acid. Rooted plants survived (87.5%) and grew well after transfer into soil for 4 wk. More than 20 000 regenerated plants of a salt-tolerant variant line of Phragmites communis have been produced. This protocol is useful for clonal micropropagation and possibly for Agrobacterium- mediated gene transfer in P. communis.  相似文献   

13.
Linkage maps of the sweet cherry cultivar ‘Emperor Francis’ (EF) and the wild forest cherry ‘New York 54’ (NY) were constructed using primarily simple sequence repeat (SSR) markers and gene-derived markers with known positions on the Prunus reference map. The success rate for identifying SSR markers that could be placed on either the EF or NY maps was only 26% due to two factors: a reduced transferability of other Prunus-species-derived markers and a low level of polymorphism in the mapping parents. To increase marker density, we developed four cleaved amplified polymorphic sequence markers (CAPS), 19 derived CAPS markers, and four insertion–deletion markers for cherry based on 101 Prunus expressed sequence tags. In addition, four gene-derived markers representing orthologs of a tomato vacuolar invertase and fruit size gene and two sour cherry sorbitol transporters were developed. To complete the linkage analysis, 61 amplified fragment length polymorphism and seven sequence-related amplified polymorphism markers were also used for map construction. This analysis resulted in the expected eight linkage groups for both parents. The EF and NY maps were 711.1 cM and 565.8 cM, respectively, with the average distance between markers of 4.94 cM and 6.22 cM. A total of 82 shared markers between the EF and NY maps and the Prunus reference map showed that the majority of the marker orders were the same with the Prunus reference map suggesting that the cherry genome is colinear with that of the other diploid Prunus species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

15.
16.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

17.
An efficient procedure for direct organogenesis and regeneration of hop (Humulus lupulus L.) was established. For the first time Agrobacterium-mediated genetic transformation of hop (cv. "Tettnanger") was achieved. Shoot internodes from in vitro cultures were identified as the most suitable type of explant for regeneration. Using this type of explant, a shoot-inducing medium was developed that supported direct organogenesis of approximately 50% of the explants. Plantlets were successfully rooted and transferred to the greenhouse. Overall, in less than 6 months hop cultures propagated in vitro were regenerated to plants in the greenhouse. Agrobacterium-mediated genetic transformation was performed with the reporter gene GUS (-glucuronidase). The presence and function of transgenes in plants growing in the greenhouse was verified by PCR (polymerase chain reaction) and enzyme assay for GUS activity, respectively. We have obtained 21 transgenic plants from 1,440 explants initially transformed, yielding an overall transformation efficiency of 1.5%.Abbreviations BAP 6-Benzylaminopurine - GA3 Gibberellic acid - GUS -Glucuronidase - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - NAA -Naphthaleneacetic acid - nptII Neomycin phosphotransferase II - PCR Polymerase chain reaction - TDZ 1-Phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron)Communicated by H. Lörz  相似文献   

18.
Plum pox virus (sharka; PPV) can cause severe crop loss in economically important Prunus species such as peach, plum, apricot, and cherry. Of these species, certain apricot cultivars (‘Stark Early Orange’, ‘Goldrich’, ‘Harlayne’) display significant levels of resistance to the disease and are the genetic substrate for studies of several xlaboratories working cooperatively to genetically characterize and mark the resistance locus or loci for marker-assisted breeding. The goals of the work presented in this communication are the characterization of the genetics of PPV resistance in ‘Stark Early Orange’ and the development of co-dominant molecular markers for marker-assisted selection (MAS) in PPV resistance breeding. We present the first genetic linkage map for an apricot backcross population of ‘Stark Early Orange’ and the susceptible cultivar ‘Vestar’ that segregates for resistance to PPV. This map is comprised of 357 loci (330 amplified fragment length polymorphisms (AFLPs), 26 simple sequence repeats (SSRs), and 1 morphological marker for PPV resistance) assigned to eight linkage groups. Twenty-two of the mapped SSRs are shared in common with genetic reference map for Prunus (T × E; Joobeur et al. 1998) and anchor our apricot map to the general Prunus map. A PPV resistance locus was mapped in linkage group 1 and four AFLP markers segregating with the PPV resistance trait, identified through bulk segregant analysis, facilitated the development of SSRs in this region. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Lalli, D.A. and Salava, J. contributed equally to this work.  相似文献   

19.
Wu S  Yu Z  Wang F  Li W  Ye C  Li J  Tang J  Ding J  Zhao J  Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering. Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号