首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using phenotypic approaches, we have detected that 17% of human intestinal Lactobacillus and Bifidobacterium strains could be exopolysaccharide (EPS) producers. However, PCR techniques showed that only 7% harbored genes related to the synthesis of heteropolysaccharides. This is the first work to screen the human intestinal ecosystem for the detection of EPS-producing strains.  相似文献   

3.
本研究利用体外培养人体肠道菌转化黄芩苷,探索转化方法及模型;用醇沉法提取了黄芩苷转化酶,即β-D-葡萄糖醛酸苷酶,并探讨了酶促影响因素;通过高效液相色谱检测产物黄芩素。经实验确定,黄芩苷转化培养液经超声波处理后,在转化液中有黄芩素检出。实验得知,转化酶为胞内酶,该酶的最适反应温度为55℃,最适pH为6.0,Ca2+、Mg2+和Cu2+对酶促反应具有促进作用,而Fe2+则具有抑制作用,Zn2+浓度在l mmol/L时起促进作用,在5 mmol/L时起抑制作用。  相似文献   

4.
Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics.  相似文献   

5.
The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs) produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells.  相似文献   

6.
By using cryo-scanning electron microscopy and quantification with lectin-conjugated probes, we have detected the production of exopolysaccharides (EPS) in Bifidobacterium animalis subsp. lactis in the presence of bile. In addition, the expression of gtf01207, which codifies a putative priming glycosyltransferase involved in EPS synthesis, was induced by bile.  相似文献   

7.
A total of 214 strains of plant-associated fluorescent pseudomonads were screened for the ability to produce the acidic exopolysaccharide (EPS) alginate on various solid media. The fluorescent pseudomonads studied were saprophytic, saprophytic with known biocontrol potential, or plant pathogenic. Approximately 10% of these strains exhibited mucoid growth under the conditions used. The EPSs produced by 20 strains were isolated, purified, and characterized. Of the 20 strains examined, 6 produced acetylated alginate as an acidic EPS. These strains included a Pseudomonas aeruginosa strain reported to cause a dry rot of onion, a strain of P. viridiflava with soft-rotting ability, and four strains of P. fluorescens. However, 12 strains of P. fluorescens produced a novel acidic EPS (marginalan) composed of glucose and galactose (1:1 molar ratio) substituted with pyruvate and succinate. Three of these strains were soft-rotting agents. Two additional soft-rotting strains of P. fluorescens produced a third acidic novel EPS composed of rhamnose, mannose, and glucose (1:1:1 molar ratio) substituted with pyruvate and acetate. When sucrose was present as the primary carbon source, certain strains produced the neutral polymer levan (a fructan) rather than an acidic EPS. Levan was produced by most strains capable of synthesizing alginate or the novel acidic EPS containing rhamnose, mannose, and glucose but not by strains capable of marginalan production. It is now evident that the group of bacteria belonging to the fluorescent pseudomonads is capable of elaborating a diverse array of acidic EPSs rather than solely alginate.  相似文献   

8.
9.
乳酸菌胞外多糖是乳酸菌生长代谢过程中产生并分泌到细胞外的一种天然高分子聚合物。作为一种新型的天然食品添加剂,乳酸菌胞外多糖因其独特的生理功能和产业潜力而备受研究者青睐。但由于乳酸菌胞外多糖结构组分、功能效用的不同,很难建立一个通用的生产方法和检测标准。另外,如何提高胞外多糖产量也是未来要面临的一大挑战。从乳酸菌胞外多糖的遗传研究、结构修饰、构效关系、生物学活性几个方面进行综述,并对未来研究方向进行展望。  相似文献   

10.
Human milk contains a high concentration of complex oligosaccharides that influence the composition of the intestinal microbiota in breast-fed infants. Previous studies have indicated that select species such as Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum can utilize human milk oligosaccharides (HMO) in vitro as the sole carbon source, while the relatively few B. longum subsp. longum and Bifidobacterium breve isolates tested appear less adapted to these substrates. Considering the high frequency at which B. breve is isolated from breast-fed infant feces, we postulated that some B. breve strains can more vigorously consume HMO and thus are enriched in the breast-fed infant gastrointestinal tract. To examine this, a number of B. breve isolates from breast-fed infant feces were characterized for the presence of different glycosyl hydrolases that participate in HMO utilization, as well as by their ability to grow on HMO or specific HMO species such as lacto-N-tetraose (LNT) and fucosyllactose. All B. breve strains showed high levels of growth on LNT and lacto-N-neotetraose (LNnT), and, in general, growth on total HMO was moderate for most of the strains, with several strain differences. Growth and consumption of fucosylated HMO were strain dependent, mostly in isolates possessing a glycosyl hydrolase family 29 α-fucosidase. Glycoprofiling of the spent supernatant after HMO fermentation by select strains revealed that all B. breve strains can utilize sialylated HMO to a certain extent, especially sialyl-lacto-N-tetraose. Interestingly, this specific oligosaccharide was depleted before neutral LNT by strain SC95. In aggregate, this work indicates that the HMO consumption phenotype in B. breve is variable; however, some strains display specific adaptations to these substrates, enabling more vigorous consumption of fucosylated and sialylated HMO. These results provide a rationale for the predominance of this species in breast-fed infant feces and contribute to a more accurate picture of the ecology of the developing infant intestinal microbiota.  相似文献   

11.
The relationship between bacterial oxidation of hydrocarbons and sulfate reduction was studied in an experimental system with liquid paraffin used as a source of organic compounds inoculated with silt taken from a reservoir. Pseudomonads dominated in the hydrocarbon-oxidizing silt bacteriocenosis. However, Rodococcusand Arthrobacteria amounted to no more than 3%. Arthrobacteria dominated the microbial association formed in the paraffin film of the model system. Sulfate-reducing bacteria were represented by genera Desulfomonas, Desulfotomaculum, and Desulfovibrio. The growth of sulfate-reducing bacteria in media containing paraffin, successive products of its oxidation (cetyl alcohol, stearate, and acetate), and extracellular metabolites of hydrocarbon-reducing bacteria was studied. The data showed that sulfate-reducing bacteria did not use paraffin or cetyl alcohol as growth substrates. However, active growth of sulfate-reducing bacteria was observed in the presence of stearate and extracellular water-soluble or lipid metabolites of Arthrobacteria.  相似文献   

12.
Rhodopseudomonas sp. strain BB1, isolated from a coastal marine sediment, immediately metabolized mercaptomalate when grown on mercaptomalate. Sulfide was detected as an intermediate. Extracts of cells grown on mercaptomalate converted mercaptomalate or 3-mercaptopropionate to equimolar amounts of sulfide and either fumarate or acrylate, respectively. Rhodopseudomonas sp. strain BB1 gave higher growth yields on mercaptomalate than on sulfide or malate, consistent with metabolism of the carbon chain of the thiol and the liberated sulfide; i.e., the organic thiol was an organolithotrophic substrate. In contrast, Thiocapsa roseopersicina, isolated previously from a marine microbial mat, had similar growth yields on sulfide, mercaptomalate, or 3-mercaptopropionate, with fumarate or acrylate accumulation from the thiols. T. roseopersicina did not grow photoorganotrophically on fumarate or acrylate, and the thiols were only a source of sulfide for photolithoautotrophic growth.  相似文献   

13.
14.
Six cyanobacterial isolates recovered from Polynesian microbial mats, called “kopara,” were cultured using laboratory-closed photobioreactors and were shown to produce exopolymers as released and capsular exopolysaccharides (EPS). These polymers have been chemically characterized using colorimetric and elemental assays, infrared spectrometry, and gas chromatography. Both capsular and released EPS consisted of 7 to 10 different monosaccharides with neutral sugars predominating. Interestingly, four isolates exhibited sulfate contents ranging from 6% to 19%. On the basis of preliminary data, cyanobacteria from this unusual ecosystem appear to be an important source of novel EPS of a great interest in terms of their biological activities.  相似文献   

15.
Exopolysaccharides were isolated and purified from Lactobacillus johnsonii FI9785, which has previously been shown to act as a competitive exclusion agent to control Clostridium perfringens in poultry. Structural analysis by NMR spectroscopy revealed that L. johnsonii FI9785 can produce two types of exopolysaccharide: EPS-1 is a branched dextran with the unusual feature that every backbone residue is substituted with a 2-linked glucose unit, and EPS-2 was shown to have a repeating unit with the following structure: -6)-α-Glcp-(1–3)-β-Glcp-(1–5)-β-Galf-(1–6)-α-Glcp-(1–4)-β-Galp-(1–4)-β-Glcp-(1-. Sites on both polysaccharides were partially occupied by substituent groups: 1-phosphoglycerol and O-acetyl groups in EPS-1 and a single O-acetyl group in EPS-2. Analysis of a deletion mutant (ΔepsE) lacking the putative priming glycosyltransferase gene located within a predicted eps gene cluster revealed that the mutant could produce EPS-1 but not EPS-2, indicating that epsE is essential for the biosynthesis of EPS-2. Atomic force microscopy confirmed the localization of galactose residues on the exterior of wild type cells and their absence in the ΔepsE mutant. EPS2 was found to adopt a random coil structural conformation. Deletion of the entire 14-kb eps cluster resulted in an acapsular mutant phenotype that was not able to produce either EPS-2 or EPS-1. Alterations in the cell surface properties of the EPS-specific mutants were demonstrated by differences in binding of an anti-wild type L. johnsonii antibody. These findings provide insights into the biosynthesis and structures of novel exopolysaccharides produced by L. johnsonii FI9785, which are likely to play an important role in biofilm formation, protection against harsh environment of the gut, and colonization of the host.  相似文献   

16.
Three bacteriocin-producing bifidobacterial isolates from newborns were identified as Bifidobacterium thermacidophilum (two strains) and B. thermophilum (one strain). This study was undertaken to evaluate the ability of these strains to compete with food-borne Listeria monocytogenes for adhesion and invasion sites on Caco-2 and HT-29 cells. The bifidobacteria adhered at levels ranging from 4% to 10% of the CFU added, but none of the bifidobacteria were able to invade cells. The abilities of Listeria to adhere to and to invade cells varied widely depending on the strain tested. Three groups of Listeria were identified based on invasiveness: weakly invasive, moderately invasive, and highly invasive strains. One strain from each group was tested in competition with bifidobacteria. B. thermacidophilum RBL70 was the most effective in blocking invasion of Listeria, and the decreases in invasion ranged from 38% to 90%. For all three bifidobacterial strains, contact between the cell monolayer and the bifidobacteria for 1 h before exposure to Listeria increased the degree of inhibition. Finally, visualization of competition for adhesion sites on cells by fluorescent in situ hybridization suggested that the two bacteria tended to adhere in close proximity.  相似文献   

17.
Degradation of N-Nitrosamines by Intestinal Bacteria   总被引:4,自引:1,他引:4       下载免费PDF全文
A major proportion of bacterial types, common in the gastrointestinal tract of many animals and man, were active in degrading diphenylnitrosamine and dimethylnitrosamine, the former being degraded more rapidly than the latter. At low nitrosamine concentrations (<0.05 μmol/ml), approximately 55% of added diphenylnitrosamine, 30% of N-nitrosopyrrolidine, and 4% of dimethylnitrosamine were degraded. The route of nitrosamine metabolism by bacteria appears to be different from that proposed for breakdown by mammalian enzyme systems in that carbon dioxide and formate were not produced. In bacteria, the nitrosamines were converted to the parent amine and nitrite ion and, in addition, certain unidentified volatile metabolites were produced from dimethylnitrosamine by bacteria. The importance of bacteria in reducing the potential hazard to man of nitrosamines is discussed.  相似文献   

18.
On the screening of microorganisms which accumulate ultra violet light absorbing substances, some sporogenous bacteria were selected as powerful strains for production of a crystalline substance having a maximum absorption at 267.5 mμ (pH 6.0 in water). These strains were microbiologically examined and named B. subtilis var. thermophilus. Submerged fermentation was carried out for 48 hrs at 37°C in glucose bouillon medium and the isolation of substance was performed by absorption to active carbon and elution with ammonia water.

On the basis of chemical studies of this crystal, it was identified as urocanic acid.  相似文献   

19.
对石油污染土壤中筛选到的能产生生物表面活性剂的石油降解菌X-1(芽孢杆菌),进行表面活性剂的提取和鉴定,并对其产剂条件进行了优化。结果表明:菌株X-1产生的生物表面活性剂为浅黄色粉末状物质。通过硅胶板薄层层析和红外光谱分析,判定表面活性剂为脂肽、脂蛋白类物质。菌株X-1产生表面活性剂的最佳条件为:温度32℃,pH 7.0,盐度2 g/L NaCl,最佳碳源为淀粉,最佳氮源为蛋白胨。  相似文献   

20.
During recent years, the exopolysaccharides (EPS) produced by some strains of lactic acid bacteria and bifidobacteria have attracted the attention of researchers, mainly due to their potential technological applications. However, more recently, it has been observed that some of these EPS present immunomodulatory properties, which suggest a potential effect on human health. Whereas EPS from lactic acid bacteria have been studied in some detail, those of bifidobacteria largely remain uncharacterized in spite of the ubiquity of EPS genes in Bifidobacterium genomes. In this review, we have analysed the data collected in the literature about the potential immune-modulating capability of EPS produced by lactic acid bacteria and bifidobacteria. From this data analysis, as well as from results obtained in our group, a hypothesis relating the physicochemical characteristics of EPS with their immune modulation capability was highlighted. We propose that EPS having negative charge and/or small size (molecular weight) are able to act as mild stimulators of immune cells, whereas those polymers non-charged and with a large size present a suppressive profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号