首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.Abbreviations CLSM confocal laser scanning microscopy - EM electron microscopy - GC generative cell - GN generative nucleus - MT microtubule - SC sperm cell - SN sperm nucleus - VN vegetative nucleus  相似文献   

2.
-Tubulin was localized in tobacco pollen tubes using an antibody raised against a peptide conserved in all known -tubulins. Antibody staining occurs in a primarily punctate pattern along the length of the microtubule bundles in generative cells and along cortical microtubules in the vegetative cytoplasm. During generative cell division, -tubulin is localized in the forming mitotic apparatus. By metaphase, it is present along kinetochore fibers except at their plus ends located at the kinetochores. By telophase, staining is observed in the phragmoplast, where it again avoids the plus ends of microtubules at the cell plate. -Tubulin is also present at the periphery of the sperm nuclei. A patch of intense staining on the distal side of each nucleus marks the site of assembly of a new population of sperm microtubules. No specific fluorescence is present in control pollen tubes treated with preimmune IgG. These localization patterns bear similarities to those seen in somatic cells and in addition may help explain changes in microtubule arrays between generative cells and sperm.  相似文献   

3.
M. Cresti  M. Murgia  C. H. Theunis 《Protoplasma》1990,154(2-3):151-156
Summary Microtubules tightly cross-linked into bundles are described in the sperm cells ofBrassica oleracea pollen tubes. The sperm cells are lobed and tailed and the microtubule bundles are often located in these parts of the cells. In the present paper we suggest that the cross-linked microtubule organization could determine an intertubular sliding, probably generating a motility system that propels the sperm cells through the tube.Abbreviations GC generative cell - Mfs microfilaments - Mts microtubules - SC sperm cell - VC vegetative cell - VN vegetative nucleus  相似文献   

4.
Nuclear and cell migration during pollen development in rice were studied using semi-thin section light microscopy, differential interference contrast microscopy and epifluorescence microscopy. Four migrations of nuclei and cells were observed and described in detail here. The first nuclear migration occurs at the uninucleate microspore stage, when the nucleus of the microspore migrates from the center to the periphery of the cell, and then to the wall opposite the pollen aperture where pollen mitosis I takes place. The second migration occurs at the early bicellular pollen stage, with the vegetative nucleus migrating three-quarters of the circumference of the pollen wall, finally locating at the periphery of the wall where the microspore cell nucleus is positioned. The third migration occurs at the late bicellular pollen stage, with the vegetative nucleus migrating from the periphery of the cell to the central part of the pollen and the generative cell migrating from the opposite side of the aperture to a position between the aperture and the vegetative nucleus where pollen mitosis II takes place. The fourth migration appears at the mature pollen stage when the two sperm cells and the vegetative nucleus migrate to the opposite side of the aperture, finally becoming positioned in the cytoplasm of the vegetative cell distal to the aperture where the male germ unit forms. Cytological observations of pollen abortion resulting from allelic interaction at the S-a, S-b and S-c loci show that abnormalities in the first or second nuclear migration result in the formation of empty abortive pollen, whereas abnormalities in the third or fourth migrations cause production of stainable abortive pollen.  相似文献   

5.
C. H. Theunis 《Protoplasma》1990,158(3):176-181
Summary In isolated condition, the sperm cells ofSpinacia oleracea are no longer arranged in pairs as in the pollen grain. The vegetative membrane, which surrounds a sperm cell pair in a mature pollen grain, is lost during the isolation procedure. The sperm cells become spherical in shape.The isolated sperm cell is surrounded by an intact plasma membrane. The heterochromatic or euchromatic sperm cell nucleus is located in the cell center. Mitochondria are round to oval and have distinct cristae. Often they are clustered in groups of 5 to 10 mitochondria. Dictyosomes are present in the cytoplasm and consist of 4 to 5 cisterns. Endoplasmatic reticulum is mostly situated at the sperm cell periphery, as single cisterns very near the plasma membrane.From diameters of sectioned sperm cells in electron micrographs, it is possible to calculate the average diameter of the whole sperm cell. This average diameter is 3.66 m with a variation of 3.0 m to 4.2 m, resulting in an average volume of 25.6 m3. The nuclear volume is 12.8 m3 (50.0% of the whole cell) and the mitochondrial volume is 0.7 m3 (2.5% of the whole cell). The frequency distribution of the isolated sperm cells diameters shows only one peak with a normal distribution, indicating that there is no dimorphism in volume.  相似文献   

6.
H. L. Mogensen 《Protoplasma》1986,134(2-3):67-72
Summary Computer-generated, three-dimensional reconstructions from serial ultrathin sections were used to investigate the spatial organization and extent of association between the generative cell and vegetative nucleus within the mature pollen grain of amaryllis. In all cases examined, the highly lobed vegetative nucleus was found in close proximity and positioned laterally to the elongated, oval shaped generative cell. Numerous projections of the vegetative nucleus come to within 53 nm of the inner vegetative cell plasma membrane which surrounds the generative cell. These areas of close association may continue transversely around the generative cell for a distance of up to 4 m. Although an association exists between the generative cell and vegetative nucleus of the mature pollen grain, it is apparent that several changes must take place after pollination in order to achieve the high amount of close contact that occurs between the vegetative nucleus and the numerous terminal cell extensions of the leading sperm in the pollen tube of amaryllis (Mogensen 1986). Thus, this study demonstrates that the spatial organization among components of the male germ unit in the mature pollen grain does not necessarily reflect relationships that ultimately exist among these components within the pollen tube.  相似文献   

7.
S. M. Read  A. E. Clarke  A. Bacic 《Protoplasma》1993,174(3-4):101-115
Summary Production of sperm cells by division of the generative cell occurs during growth ofNicotiana (tobacco) pollen tubes through the sporophytic tissue of the style, and is associated with transition to the second phase of pollen-tube growth. WhenNicotiana pollen tubes are grown in liquid culture, the extent of generative-nucleus division and the timing of this division depend on the chemical composition of the medium. Addition of reduced forms of nitrogen, either as mixed amino-acids (0.03% w/v of an acid hydrolysate of casein) or as 1 mM ammonium chloride, induces division of the generative nucleus in over 90% of the tubes; 3 mM calcium nitrate does not stimulate division. Individual amino-acids differ in their ability to induce this division. Contaminants in some batches of poly(ethylene glycol), which is a major component of pollen-tube growth media, inhibit generative-nucleus division; this inhibition is greater in the absence of nitrogen, which increases the observed nitrogen-dependence of division. Reduced forms of nitrogen are also required for growth of pollen tubes after division, when callose plugs are deposited. In the absence of nitrogen, growth continues until the point where sperm cell production would normally occur, then ceases. Addition of amino-acids or ammonium chloride thus allows cultured pollen tubes ofNicotiana to progress to their second phase of growth. WhenNicotiana pollen is germinated in a complete culture medium at 25–26°C, sperm nuclei are first observed in the growing tubes after about 10 h, and by about 16 h most of the tubes have undergone division; at lower temperatures, division is delayed. The timing of division also varies between species ofNicotiana, but division occurs similarly in self-compatible and self-incompatible species. Anaphase in an individual pollen tube is calculated to take less than 4 min. The resultant sperm nuclei usually trail behind the vegetative nucleus, but a variety of arrangements of the three nuclei are observed.Abbreviations DAPI 4,6-diamidino-2-phenylindole - PEG poly(ethylene glycol) - OG ordinary grade of PEG - SP Specially Purified for Biochemistry grade of PEG  相似文献   

8.
Summary Brassica napus pollen development during the formation of the generative cell and sperm cells is analysed with light and electron microscopy. The generative cell is formed as a small lenticular cell attached to the intine, as a result of the unequal first mitosis. After detaching itself from the intine, the generative cell becomes spherical, and its wall morphology changes. Simultaneously, the vegetative nucleus enlarges, becomes euchromatic and forms a large nucleolus. In addition, the cytoplasm of the vegetative cell develops a complex ultrastructure that is characterized by an extensive RER organized in stacks, numerous dictyosomes and Golgi vesicles and a large quantity of lipid bodies. Microbodies, which are present at the mature stage, are not yet formed. The generative cell undergoes an equal division which results in two spindle-shaped sperm cells. This cell division occurs through the concerted action of cell constriction and cell plate formation. The two sperm cells remain enveloped within one continuous vegetative plasma membrane. One sperm cell becomes anchored onto the vegetative nucleus by a long extension enclosed within a deep invagination of the vegetative nucleus. Plastid inheritance appears to be strictly maternal since the sperm cells do not contain plastids; plastids are excluded from the generative cell even in the first mitosis.  相似文献   

9.
S. D. Russell  D. D. Cass 《Protoplasma》1981,107(1-2):85-107
Summary Male gametes ofPlumbago zeylanica were examined in pollen grains and tubes using light and electron microscopy of chemically and physically fixed tissues, and Nomarski interference microscopy of isolated, living sperm cells. Male gametes are elongate, spindleshaped cells containing a nucleus, mitochondria, ER, ribosomes, vesicles, dictyosomes, probable microfilaments, and a variable number of plastids. In mature pollen grains ofP. zeylanica, the two sperm cells are directly linked; they share a transverse cell wall with plasmodesmata and are enclosed together by the inner vegetative cell plasma membrane. One of these two sperms is also associated with the vegetative nucleus as a consistent feature of pollen grain organization. The basis of this association appears to be a long, narrow projection of the sperm cell (averaging < 1 m wide and about 30 m long) which wraps around the periphery of the vegetative nucleus and occupies embayments of that nucleus. This association is maintained throughout pollen tube growth but becomes less extensive near the completion of tube growth and is severed following tube discharge. The consistent occurrence of the sperm-vegetative nucleus association in pollen grains, tubes and isolated pollen cytoplasm suggests that the two structures may be directly connected, but attempts to visualize this type of connection were unsuccessful. Possibly, the entwining nature and extent of complementary interfaces between vegetative nucleus and sperm may have a role in stabilizing their association. Functionally, the two sperms and vegetative nucleus appear to travel as a linked unit within the pollen tube, possibly increasing the effectiveness of gamete delivery and helping to ensure nearly simultaneous transmission of sperms into the receptive megagametophyte.  相似文献   

10.
Antibodies to arabinogalactan proteins were tested for binding to sperm cells ofBrassica campestris and to generative cells and sperm ofLilium longiflorum. Two monoclonal antibodies, JIM8 and JIM13, bound toBrassica sperm in pollen grains and pollen tubes and to isolated sperm. Sperm pairs retained within the vegetative cell inner plasma membrane fluoresced more brightly than single sperm, indicating that the vegetative cell inner plasma membrane that surrounds sperm pairs also contains arabinogalactan proteins. Isolated sperm pairs exhibited a uniform fluorescence while single sperm had patches of fluorescence. InLilium, isolated generative cells and single sperm cells bound antibodies in a patchy pattern. Antibodies to arabinogalactan proteins may be useful in describing the overall shape of sperm cells and for identifying sperm among other cell types.  相似文献   

11.
M. Cresti  F. Ciampolini  G. Sarfatti 《Planta》1980,150(3):211-217
No differences have been observed in vivo between Lycopersicum peruvianum compatible and incompatible pollen during activation and pollen tube emission and organization, that is until 4 h and 30 min after pollination. During pollen activation the main events are the setting free of rough endoplasmic reticulum (RER) cisterns which were stacked in the mature pollen, the increase in the number of polysomes, and a great activity of the dictyosomes. Immediately after germination of the vegetative nucleus and the generative cell move into the tube, the generative cell diviting to form the male gametes; the tube then becomes organized in four zones. This series of changes is similar to what has already been observed in vitro except that in vitro the generative cell remains undivided and the whole process from seeding to tube organization takes 3 h instead of 4 h and 30 min after pollination, as it does in vivo. Our findings are compatible with the main models of the tube inhibition mechanism proposed till now.Abbreviations RER rough endoplasmic reticulum - GC generative cell - VN vegetative nucleus - GP germinative pore Research performed under C.N.R. (Italian National Research Council) program Biology of Reproduction  相似文献   

12.
Summary Ultrastructural analysis of the mature viable unhydrated pollen of maize,Zea mays from dehiscent anthers shows that the sperm cells are physically distant, each bounded by an envelope comprising their own plasma membrane and the inner plasma membrane of the vegetative cell. The chondriome is unusual in containing one or more filamentous complexes, up to 12m in length appressed to the side of the sperm nucleus. The extensions at each end of the elongate sperm cells contain longitudinally-oriented arrays of endoplasmic lamellae. In a three-dimensional reconstruction of serial thin sections, there is a long J-shaped sperm, c. 35 × 5m and up to 1m in thickness, sited within pointed evaginations of the vegetative nucleus and a second shorter sperm c. 20 × 5m and up to 3.5m in thickness.Abbreviations PA-TCH-SP periodic acid-thiocarbohydrazide-silver proteinate - DAPI 4,6-diamino-2-phenylindole - SC sperm cell - Sn sperm nucleus - Ua-Pb Uranyl acetate-lead citrate staining - ER endoplasmic reticulum  相似文献   

13.
The association of the two sperm cells inBrassica napus pollen following the generative cell division was investigated. The generative cell during division is located in the center of the pollen grain, within the vegetative cell. The space present between the two cells is slightly irregular as seen following standard glutaraldehyde fixation. After completion of mitosis vesicles appear in the equatorial plane, coalescing centripetally to form a cell plate which fuses with the membrane of the generative cell, dividing it in two sperm cells. They are isolated from the vegetative cell by the space between the two cell membranes and are separated from each other by a similar space resulting from the cell plate formed during cytokinesis.  相似文献   

14.
I. Tanaka 《Protoplasma》1988,142(1):68-73
Summary Methods are described for the isolation of large quantities of generative cells and their protoplasts from the pollen ofLilium longiflorum. First, large numbers of pollen protoplasts were enzymatically isolated from immature pollen grains. When they were gently disrupted mechanically, the pollen contents including spindle-shaped generative cells were released. The generative cells were separated from other structures by Percoll density gradient centrifugation. They were nearly spherical, but had a callosic cell wall. The isolated generative cells were then re-treated in enzyme solution to yield authentic protoplasts. The generative cell protoplasts, gametoplasts, were uniform in size and contained a condensed haploid nucleus with relatively little cytoplasm.  相似文献   

15.
Kenji Ueda  Ichiro Tanaka 《Planta》1994,192(3):446-452
A method has been developed for the efficient isolation of generative and vegetative nuclei from the generative and vegetative cells, respectively, of pollen grains of Lilium longiflorum Thunb. First, large numbers of pollen protoplasts were isolated enzymatically from nearly mature pollen grains. After the protoplasts had been gently disrupted by a mechanical method, the generative cells could be separated from the other pollen contents, which included vegetative nuclei. The generative nuclei were isolated by suspending the purified generative cells in a buffer that contained a non-ionic deter gent. The isolated generative nuclei, like those within pollen grains, had highly condensed chromatin and the isolated material was without contamination by vegetative nuclei. When basic proteins, extracted from the preparation of generative nuclei by treatment with 0.4 N H2SO4, were compared with those from preparations of somatic and vegetative nuclei by two-dimensional gel electrophoresis, it was revealed that at least five proteins with apparent molecular masses of 35, 33, 22.5, 21 and 18.5 kDa (p35, p33, p22.5, p21 and p18.5), respectively, were specific for, or highly concentrated in, the generative nuclei. An examination of solubility in 5% perchloric acid and the mobility during electrophoresis indicated that two of these proteins (p35 and p33) resembled H1 histones while the three other proteins (p22.5, p21 and p18.5) resembled core histones. It is likely that these basic nuclear proteins are related to the condensation of chromatin or to the differentiation of male gametes in flowering plants, as is the case for analogous proteins present during spermatogenesis in animals.Abbreviations DAPI 4'6-diamidino-2-phenylindole - NIB nuclear isolation buffer This work was supported in part by Grant-inAid for Scientific Research from the Ministry of Education, Science and Culture, Japan.  相似文献   

16.
Summary In view of the importance of the lily pollen tube as an experimental model and the improvements in ultrastructural detail that can now be attained by the use of rapid freeze fixation and freeze substitution (RF-FS), we have reexamined the ultrastructure of these cells in material prepared by RF-FS. Several previously unreported details have been revealed: (1) the cytoplasm is organized into axial slow and fast lanes, each with a distinct structure; (2) long, straight microtubule (MT) and microfilament (MF) bundles occur in the cytoplasm of the fast lanes and are coaligned with every organelle present; (3) the cortical cytoplasm contains complexes of coaligned MTs, MFs, and endoplasmic reticulum (ER); (4) the cortical ER is arranged in a tight hexagonal pattern and individual elements are closely appressed to the plasma membrane with no space between; (5) mitochondria and ER extend into the extreme apex along the flanks of the pollen tube, and vesicles and ER are packed into an inverted cone-shaped area at the center of the apex; (6) MF bundles in the tip region are fewer, finer, and in random orientation in comparison to those of the fast lanes; (7) the generative cell (GC) cell wall complex contains patches of plasmodesmata; (8) The GC cytoplasm contains groups of spiny vesicles that are closely associated with and seem to be fusing with or pinching off from mitochondria, and (9) the vegetative nucleus (VN) contains internal MT-like structures as well as numerous cytoplasmic MTs associated with its membrane and also located between the VN and GC.Abbrevations CF chemical fixation - ER endoplasmic reticulum - GC generative cell - MF microfilament - MT microtubule - PD plasmodesmata - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution - VN vegetative nucleus  相似文献   

17.
Summary The behavior of the generative cell during male gametophyte development inPlumbago zeylanica was examined by epifluorescence microscopy and electron microscopy with organelle nucleoid as a cytoplasm marker. When the thin sections stained with 4,6-diamidino-2-phenylindoIe (DAPI) were observed under an epifluorescence microscope, two types of fluorescence spots were detected in the cytoplasm of the pollen cells before the second mitosis. The spots emitting stronger fluorescence were confirmed as plastid nucleoids and those emitting dimmer fluorescence were mitochondrial nucleoids. Before the first mitosis, both plastid and mitochondrial nucleoids distributed randomly in the cytoplasm of the microspore. A small lenticular generative cell formed with attachment to the interior of the intine after the mitosis. Small vacuoles were found in the lenticular cell. In the cytoplasm of the lenticular cell, both plastid nucleoids and the small vacuoles were distributed randomly at the very beginning but began to migrate in opposite directions immediately. Plastid nucleoids aggregated to the side of the cell that faces the pollen center and the small vacuoles aggregated to the side of the cell that attaches to the inline. As the result, the lenticular generative cell appeared highly polarized in cytoplasm location soon after the first mitosis. In accordance with the definition of the cytoplasm polarization, the primary wall between the generative and the vegetative cells began to flex and the lenticular generative cell started to protrude towards the pollen center. When the generative cell peeled away from the inline, it was spherical in shape with the pole that aggregated plastids towards the vegetative nucleus. But the cell direction appeared to be transformed immediately. The pole that aggregated small vacuoles turned to the position towards the vegetative nucleus and the pole that aggregated plastid nucleoids turned to the position countering to the vegetative nucleus. A cellular protuberance formed at the edge of the pole that aggregated small vacuoles and elongated into a tapered end that got into contact with the vegetative nucleus. The polarization of the cytoplasm kept constant throughout the second mitosis. The small vacuoles that apportioned to the sperm cell which attached the vegetative nucleus (the leading sperm cell) disappeared during sperm cell maturation. Plastid nucleoids were apportioned to the other sperm cell (the trailing sperm cell) completely. Mitochondrial nucleoids became undetectable after the second mitosis.  相似文献   

18.
Summary A unique form of cell division is reported for the cellsKomma caudata andCryptomonas ovata (Cryptophyceae). During cytokinesis, the posterior tail-like region of each daughter cell develops from the anterior region of the parental cell. This process, termed pole reversal, involves a major realignment in overall cell polarity as well as alterations to cytoplasmic and surface components. Pole reversal may be a consequence of flagellar apparatus transformation and reorientation during division, and pole reversal may facilitate the development of the asymmetric cell shape in daughter cells.  相似文献   

19.
Morphologic changes occurring during pollen grain activation and ultrastructural features of Lycopersicum peruvianum Mill. pollen tube during the first stages of growth in vitro have been studied. The more evident morphologic changes during activation, in comparison to those already described for mature inactive pollen, concern dictyosomes, rough endoplasmic reticulum (RER), and ribosomes. The dictyosomes are very abundant and produce large and small vesicles. Near the germinative pores both types of vesicles are present, while all along the remaining cell wall only the large type is observed. These latter react weakly to Thiéry's test and probably contain a callose precursor necessary for the deposition of a callosic layer lining at first only the inner side of the functioning pore and occasionally the other two pores, and subsequently the entire inner surface of the cell wall. The small vesicles, highly positive to Thiéry's test, are present only near the pores and could be involved in the formation of the pectocellulosic layer of the tube wall. The setting free of RER cisterns, which in the mature inactive pollen were aggregated in stacks, coinciding with polysome formation and resumption of protein synthesis, is in accord with the hypothesized role of RER cistern stacks as a reserve of synthesizing machinery. The pollen tube reaches a definitive spatial arrangement soon after the generative cell and vegetative nucleus have moved into it. At this stage four different zones that reflect a functional specialization are present. In the apical and subapical zone two types of dictysosome-originated vesicles, similar to those found in the activated pollen grain, are present. Their role in the formation of the callosic and pectocellulosic wall layers seems to be the same as in the activated pollen grain.Abbreviations ER endoplasmic reticulum - RER rough endoplasmic reticulum Research performed under CNR program Biology of Reproduction  相似文献   

20.
Summary The microtubular cytoskeleton of the generative cell (GC) ofHyacinthus orientalis has been studied until the formation of the sperm cells (SCs). Immunofluorescence procedures in combination with confocal laser scanning microscopy (CLSM) has enabled the visualization of the organization of the microtubular cytoskeleton. Chemical fixation and freeze-fixation electron microscopy have been used to investigate the cytoskeleton and the ultrastructural organization of the GC and SCs. During pollen activation the GC is spindle-shaped. Microtubules (MTs) are organized as bundles and distributed in proximity of the GC plasmamembrane, forming a basket-like structure. Following migration through the pollen tube, the basket-like structure becomes more intertwined. During the nuclear division the MTs are involved in the segregation of the chromosomes and kinetochores are clearly discernible. Association with organelles is also observed. The chromosomes of the GC remain condensed until they separate in two sperm nuclei. The pre-prophase band was never observed. At the end of the GC division the microtubular network reorganizes in the two SCs.Abbreviations CLSM confocal laser scanning microscopy - DAPI 46-diamidino-2-phenyl-indole - F-S freeze-substitution - GC generative cell - MT microtubule - PBS phosphate buffered saline - R-F rapid freeze-fixation - SC sperm cell - TBS tris buffered saline - VN vegetative nucleus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号