首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In steadily flowing water at 20 degrees C and pH 7, five organisms had the following order of resistance to ozone (at constant levels of ozone): poliovirus 1 (PV1) less than Escherichia coli less than hepatitis A virus (HAV) less than Legionella pneumophila serogroup 6 less than Bacillus subtilis spores. The tests were repeated at 10 degrees C with HAV, PV1, and E. coli. Ozone inactivation of HAV and E. coli was faster at 10 degrees C than at 20 degrees C. At 20 degrees C, 0.25 to 0.38 mg of O3 per liter was required for complete inactivation of HAV but only 0.13 mg of O3 per liter was required for complete inactivation of PV1.  相似文献   

2.
F X Abad  R M Pint  J M Diez    A Bosch 《Applied microbiology》1994,60(7):2377-2383
The efficacy of copper and silver ions, in combination with low levels of free chlorine (FC), was evaluated for the disinfection of hepatitis A virus (HAV), human rotavirus (HRV), human adenovirus, and poliovirus (PV) in water. HAV and HRV showed little inactivation in all conditions. PV showed more than a 4 log10 titer reduction in the presence of copper and silver combined with 0.5 mg of FC per liter or in the presence of 1 mg of FC per liter alone. Human adenovirus persisted longer than PV with the same treatments, although it persisted significantly less than HRV or HAV. The addition of 700 micrograms of copper and 70 micrograms of silver per liter did not enhance the inactivation rates after the exposure to 0.5 or 0.2 mg of FC per liter, although on some occasions it produced a level of inactivation similar to that induced by a higher dose of FC alone. Virus aggregates were observed in the presence of copper and silver ions, although not in the presence of FC alone. Our data indicate that the use of copper and silver ions in water systems may not provide a reliable alternative to high levels of FC for the disinfection of viral pathogens. Gene probe-based procedures were not adequate to monitor the presence of infectious HAV after disinfection. PV does not appear to be an adequate model viral strain to be used in disinfection studies. Bacteroides fragilis bacteriophages were consistently more resistant to disinfection than PV, suggesting that they would be more suitable indicators, although they survived significantly less than HAV or HRV.  相似文献   

3.
Survival of bacterial fish pathogens, including Enterococcus seriolicida, Vibrio anguillarum, and Pasteurella piscicida, in ozonated seawater was determined in a batch system. Bacterial counts of all fish pathogens decreased at more than 0.040 to 0.060 mg of total residual oxidants (TROs) per liter, whereas no decrease in viable counts was observed at less than 0.018 to 0.028 mg of TROs per liter. The 99% inactivation point was achieved at concentrations of 0.111 mg/liter for E. seriolicida, 0.063 mg/liter for P. piscicida, and 0.064 mg/liter for V. anguillarum within 1 min. Moreover, the mean 99 and 99.9% killing concentration-contact time (C.t) products were 0.123 and 0.186 mg.min/liter for E. seriolicida, 0.056 and 0.084 mg.min/liter for P. piscicida, and 0.081 and 0.123 mg.min/liter for V. anguillarum, respectively. However, the mean 99 and 99.9% C.t products for the mixed population in coastal seawater were 0.200 and 0.621 mg.min/liter. These results strongly suggest that ozone treatment at more than 1.0 mg of TROs per liter for several minutes is able to disinfect seawater for mariculture efficiently.  相似文献   

4.
Survival of bacterial fish pathogens, including Enterococcus seriolicida, Vibrio anguillarum, and Pasteurella piscicida, in ozonated seawater was determined in a batch system. Bacterial counts of all fish pathogens decreased at more than 0.040 to 0.060 mg of total residual oxidants (TROs) per liter, whereas no decrease in viable counts was observed at less than 0.018 to 0.028 mg of TROs per liter. The 99% inactivation point was achieved at concentrations of 0.111 mg/liter for E. seriolicida, 0.063 mg/liter for P. piscicida, and 0.064 mg/liter for V. anguillarum within 1 min. Moreover, the mean 99 and 99.9% killing concentration-contact time (C.t) products were 0.123 and 0.186 mg.min/liter for E. seriolicida, 0.056 and 0.084 mg.min/liter for P. piscicida, and 0.081 and 0.123 mg.min/liter for V. anguillarum, respectively. However, the mean 99 and 99.9% C.t products for the mixed population in coastal seawater were 0.200 and 0.621 mg.min/liter. These results strongly suggest that ozone treatment at more than 1.0 mg of TROs per liter for several minutes is able to disinfect seawater for mariculture efficiently.  相似文献   

5.
The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s. Both virus preparations were inactivated more rapidly at pH 6 than at pH 10. With chlorine dioxide, however, the opposite was true. Both virus preparations were inactivated more rapidly at pH 10 than at pH 6. With 0.5 mg of chlorine dioxide per liter at pH 10, more than 4 logs of the single-virus preparation were inactivated in less than 15 s. The cell-associated virus was more resistant to inactivation by the three disinfectants than was the preparation of single virions. Chlorine and chlorine dioxide, each at a concentration of 0.5 mg/liter and at pH 6 and 10, respectively, inactivated 99% of both virus preparations within 4 min. Monochloramine at a concentration of 10 mg/liter and at pH 8 required more than 6 h for the same amount of inactivation.  相似文献   

6.
The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s. Both virus preparations were inactivated more rapidly at pH 6 than at pH 10. With chlorine dioxide, however, the opposite was true. Both virus preparations were inactivated more rapidly at pH 10 than at pH 6. With 0.5 mg of chlorine dioxide per liter at pH 10, more than 4 logs of the single-virus preparation were inactivated in less than 15 s. The cell-associated virus was more resistant to inactivation by the three disinfectants than was the preparation of single virions. Chlorine and chlorine dioxide, each at a concentration of 0.5 mg/liter and at pH 6 and 10, respectively, inactivated 99% of both virus preparations within 4 min. Monochloramine at a concentration of 10 mg/liter and at pH 8 required more than 6 h for the same amount of inactivation.  相似文献   

7.
Sieves and nylon screens were used to separate primary sewage effluent solids into particle fractions of less than 7- or greater than 7-micron size. The efficiency of separation was determined by using a particle counter. Indigenous coliforms associated with the particle fractions were tested for their resistance to chlorine and monochloramine. Coliforms associated with the less than 7-microns fraction were inactivated more rapidly by 0.5 mg of chlorine per liter at 5 degrees C and pH 7 than coliforms associated with the greater than 7-microns fraction. Homogenization of the greater than 7-microns fraction not only resulted in an increase in the number of less than 7-microns particles, but also increased the rate of inactivation to a rate similar to that of the less than 7-microns fraction. With 1 mg of monochloramine per liter at 5 degrees C and pH 7, particle size had no appreciable effect on the rate of inactivation. At pH 8, however, the less than 7-micron fraction was inactivated more rapidly than the greater than 7-micron fraction. The time required for 99% inactivation of the particle fractions with monochloramine at pH 7 or 8 was 20- to 50-fold greater than the time required for the same amount of inactivation with chlorine at pH 7. The results indicate that coliforms associated with sewage effluent particles are inactivated more rapidly with 0.5 mg of chlorine per liter than with 1.0 mg of monochloramine per liter. However, greater than 7-micron particles can have a protective effect against the disinfecting action of chlorine.  相似文献   

8.
Sieves and nylon screens were used to separate primary sewage effluent solids into particle fractions of less than 7- or greater than 7-micron size. The efficiency of separation was determined by using a particle counter. Indigenous coliforms associated with the particle fractions were tested for their resistance to chlorine and monochloramine. Coliforms associated with the less than 7-microns fraction were inactivated more rapidly by 0.5 mg of chlorine per liter at 5 degrees C and pH 7 than coliforms associated with the greater than 7-microns fraction. Homogenization of the greater than 7-microns fraction not only resulted in an increase in the number of less than 7-microns particles, but also increased the rate of inactivation to a rate similar to that of the less than 7-microns fraction. With 1 mg of monochloramine per liter at 5 degrees C and pH 7, particle size had no appreciable effect on the rate of inactivation. At pH 8, however, the less than 7-micron fraction was inactivated more rapidly than the greater than 7-micron fraction. The time required for 99% inactivation of the particle fractions with monochloramine at pH 7 or 8 was 20- to 50-fold greater than the time required for the same amount of inactivation with chlorine at pH 7. The results indicate that coliforms associated with sewage effluent particles are inactivated more rapidly with 0.5 mg of chlorine per liter than with 1.0 mg of monochloramine per liter. However, greater than 7-micron particles can have a protective effect against the disinfecting action of chlorine.  相似文献   

9.
Water disinfection systems utilizing electrolytically generated copper and silver ions (200 and 20, 400 and 40, or 800 and 80 micrograms/liter) and low levels of free chlorine (0.1 to 0.4 mg/liter) were evaluated at room (21 to 23 degrees C) and elevated (39 to 40 degrees C) temperatures in filtered well water (pH 7.3) for their efficacy in inactivating Legionella pneumophila (ATCC 33155). At room temperature, a contact time of at least 24 h was necessary for copper and silver (400 and 40 micrograms/liter) to achieve a 3-log10 reduction in bacterial numbers. As the copper and silver concentration increased to 800 and 80 micrograms/liter, the inactivation rate significantly (P less than or equal to 0.05) increased from K = 2.87 x 10(-3) to K = 7.50 x 10(-3) (log10 reduction per minute). In water systems with and without copper and silver (400 and 40 micrograms/liter), the inactivation rates significantly increased as the free chlorine concentration increased from 0.1 mg/liter (K = 0.397 log10 reduction per min) to 0.4 mg/liter (K = 1.047 log10 reduction per min). Compared to room temperature, no significant differences were observed when 0.2 mg of free chlorine per liter with and without 400 and 40 micrograms of copper and silver per liter was tested at 39 to 40 degrees C. All disinfection systems, regardless of temperature or free chlorine concentration, showed increase inactivation rates when 400 and 40 micrograms of copper and silver per liter was added; however, this trend was significant only at 0.4 mg of free chlorine per liter.  相似文献   

10.
This study was undertaken to determine the survivability of low-density populations (10(0) and 10(2) CFU/g) of enterohemorrhagic Escherichia coli O157:H7 inoculated into real mayonnaise and reduced-calorie mayonnaise dressing and stored at 20 and 30 degrees C, temperatures within the range used for normal commercial mayonnaise distribution and storage. Inactivation patterns at 5 degrees C and inactivation of high-inoculum populations (10(6) CFU/g) were also determined. The pathogen did not grow in either mayonnaise formulation, regardless of the inoculum level or storage temperature. Increases in storage temperature from 5 to 20 degrees C and from 20 to 30 degrees C resulted in dramatic increases in the rate of inactivation. Populations of E. coli O157:H7 in the reduced-calorie and real formulations inoculated with a population of 0.23 to 0.29 log10 CFU/g and held at 30 degrees C were reduced to undetectable levels within 1 and 2 days, respectively; viable cells were not detected after 1 day at 20 degrees C. In mayonnaise containing an initial population of 2.23 log10 CFU/g, viable cells were not detected after 4 days at 30 degrees C or 7 days at 20 degrees C; tolerance was greater in real mayonnaise than in reduced-calorie mayonnaise dressing stored at 5 degrees C. The tolerance of E. coli O157:H7 inoculated at the highest population density (6.23 log 10 CFU/g) was less in reduced-calorie mayonnaise dressing than in real mayonnaise at all storage temperatures. In reduced-calorie mayonnaise dressing and real mayonnaise initially containing 2.23 log10 CFU/g, levels were undetectable after 28 and 58 days at 5 degrees C, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Eight persons with asthma were exposed to seven air conditions varying in temperature (37 degrees C to 49 degrees C [98.6 degrees F to 120.2 degrees F]) and water content (44 mg H2O per liter to 79 mg H2Oper liter) . Normocapnic hyperventilation for three minutes at 40% maximal voluntary ventilation was carried out for each condition. A constant-volume body plethysmograph measured the functional residual capacity and specific airway conductance (SGaw), followed by two forced expiratory manuevers. Measurements were taken before and 1, 5, 10, and 20 minutes after each challenge. Air conditions with 100% relative humidity caused a fall in the SGaw that was maximal in 1 minute. Air conditions at 100% relative humidity caused a greater fall in both the forced expiratory volume in 1 second (FEV1) (P<.05) and the SGaw (P<.005) than did conditions of the same temperature but less water content. At 44 degrees C and 100% relative humidity, the mean percent change in FEV1 and SGaw was -2% and -40%, respectively, at 1 minute after challenge. Of the conditions examined, the optimal temperature was 44 degrees C, and we speculate that the optimal water content is less than 44 mg H2O per liter. Inhaled water concentrations exceeding 44 mg H2O per liter should probably not be used in patients with asthma.  相似文献   

12.
T Zhao  M P Doyle    R E Besser 《Applied microbiology》1993,59(8):2526-2530
A strain of enterohemorrhagic Escherichia coli serotype O157:H7 isolated from a patient in an apple cider-related outbreak was used to study the fate of E. coli O157:H7 in six different lots of unpasteurized apple cider. In addition, the efficacy of two preservatives, 0.1% sodium benzoate and 0.1% potassium sorbate, used separately and in combination was evaluated for antimicrobial effects on the bacterium. Studies were done at 8 or 25 degrees C with ciders having pH values of 3.6 to 4.0. The results revealed that E. coli O157:H7 populations increased slightly (ca. 1 log10 CFU/ml) and then remained stable for approximately 12 days in lots inoculated with an initial population of 10(5) E. coli O157:H7 organisms per ml and held at 8 degrees C. The bacterium survived from 10 to 31 days or 2 to 3 days at 8 or 25 degrees C, respectively, depending on the lot. Potassium sorbate had minimal effect on E. coli O157:H7 populations, with survivors detected for 15 to 20 days or 1 to 3 days at 8 or 25 degrees C, respectively. In contrast, survivors in cider containing sodium benzoate were detected for only 2 to 10 days or less than 1 to 2 days at 8 or 25 degrees C, respectively. The highest rates of inactivation occurred in the presence of a combination of 0.1% sodium benzoate and 0.1% potassium sorbate. The use of 0.1% sodium benzoate, an approved preservative used by some cider processors, will substantially increase the safety of apple cider in terms of E. coli O157:H7, in addition to suppressing the growth of yeasts and molds.  相似文献   

13.
This study was designed to investigate the individual and combined effects of mustard flour and acetic acid in the inactivation of food-borne pathogenic bacteria stored at 5 and 22 degrees C. Samples were prepared to achieve various concentrations by the addition of acetic acid (0, 0.5, or 1%) along with mustard flour (0, 10, or 20%) and 2% sodium chloride (fixed amount). Acid-adapted three-strain mixtures of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium strains (10(6) to 10(7) CFU/ml) were inoculated separately into prepared mustard samples stored at 5 and 22 degrees C, and samples were assayed periodically. The order of bacterial resistance, assessed by the time required for the nominated populations to be reduced to undetectable levels against prepared mustards at 5 degrees C, was S. enterica serovar Typhimurium (1 day) < E. coli O157:H7 (3 days) < L. monocytogenes (9 days). The food-borne pathogens tested were reduced much more rapidly at 22 degrees C than at 5 degrees C. There was no synergistic effect with regard to the killing of the pathogens tested with the addition of 0.5% acetic acid to the mustard flour (10 or 20%). Mustard in combination with 0.5% acetic acid had less bactericidal activity against the pathogens tested than did mustard alone. The reduction of E. coli O157:H7 and L. monocytogenes among the combined treatments on the same storage day was generally differentiated as follows: control < mustard in combination with 0.5% acetic acid < mustard alone < mustard in combination with 1% acetic acid < acetic acid alone. Our study indicates that acidic products may limit microbial growth or survival and that the addition of small amounts of acetic acid (0.5%) to mustard can retard the reduction of E. coli O157:H7 and L. monocytogenes. These antagonistic effects may be changed if mustard is used alone or in combination with >1% acetic acid.  相似文献   

14.
The survival of unheated and heat-stressed (52 degrees C, 30 min) cells of Escherichia coli O157:H7 inoculated into tryptic soy broth (TSB) adjusted to various pHs (6.0, 5.4, and 4.8) with lactic acid and various water activities (a(w)s) (0.99, 0.95, and 0.90) with NaCl and incubated at 5, 20, 30, and 37 degrees C was studied. The performance of tryptic soy agar (TSA), modified sorbitol MacConkey agar (MSMA), and modified eosin methylene blue agar in supporting colony development of incubated cells was determined. Unheated cells of E. coli O157:H7 grew to population densities of 10(8) to 10(9) CFU ml-1 in TSB (pHs 6.0 and 5.4) at an a(w) of 0.99. Regardless of the pH and a(w) of TSB, survival of E. coli O157:H7 was better at 5 degrees C than at 20 or 30 degrees C. At 30 degrees C, inactivation or inhibition of growth was enhanced by reduction of the a(w) and pH. A decrease in the a(w) (0.99 to 0.90) of TSB in which the cells were heated at 52 degrees C for 30 min resulted in a 1.5-log10 reduction in the number of E. coli O157:H7 cells recovered on TSA; pH did not significantly affect the viability of cells. Recovery was significantly reduced on MSMA when cells were heated in TSB with reduced pH or a(w) for an increased length of time. With the exception of TSB (a(w), 0.90) incubated at 37 degrees C, heat-stressed cells survived for 24 h in recovery broth. TSB (a(w), 0.99) at pH 6.0 or 5.4 supported growth of E. coli O157:H7 cells at 20 or 37 degrees C, but higher numbers of heated cells survived at 5 or 20 degrees C than at 37 degrees C. The ability of unheated and heat-stressed E. coli O157:H7 cells to survive or grow as affected by the a(w) of processed salami was investigated. Decreases of about 1 to 2 log10 CFU g-1 occurred soon after inoculation of salami (pHs 4.86 and 4.63 at a(w)s of 0.95 and 0.90, respectively). Regardless of the physiological condition of the cells before inoculation into processed salami at an a(w) of either 0.95 or 0.90, decreases in populations occurred during storage at 5 or 20 degrees C for 32 days. If present at < or = 100 CFU g-1, E. coli O157:H7 would unlikely survive storage at 5 degrees C for 32 days. However, contamination of salami with E. coli O157:H7 at 10(4) to 10(5) CFU g-1 after processing would pose a health risk to consumers for more than 32 days if storage were at 5 degrees C. Regardless of the treatment conditions, performance of the media tested for the recovery of E. coli O157:H7 cells followed the order TSA > modified eosin methylene blue agar > MSMA.  相似文献   

15.
Ozone inactivation of cell-associated viruses   总被引:1,自引:0,他引:1  
The inactivation of HEp-2 cell-associated poliovirus (Sabin 1) and coxsackievirus A9 was investigated in three experimental systems, using ozone as a disinfectant. The cell-associated viral samples were adjusted to a turbidity of 5 nephelometric turbidity units. The cell-associated poliovirus and coxsackievirus samples demonstrated survival in a continuous-flow ozonation system at applied ozone dosages of 4.06 and 4.68 mg/liter, respectively, for 30 s. Unassociated viral controls were inactivated by the application of 0.081 mg of ozone per liter for 10 s. Ultrasonic treatment of cell-associated enteric viruses did not increase inactivation of the cell-associated viruses. The batch reactor with a declining ozone residual did not effect total inactivation of either cell-associated enteric virus. These cell-associated viruses were completely inactivated after exposure to ozone in a batch reactor using continuous ozonation. Inactivation of cell-associated poliovirus required a 2-min contact period with an applied ozone dosage of 6.82 mg/liter and a residual ozone concentration of 4.70 mg/liter, whereas the coxsackievirus was completely inactivated after a 5-min exposure to an applied ozone dosage of 4.81 mg/liter with an ozone residual of 2.18 mg/liter. These data indicate that viruses associated with cells or cell fragments are protected from inactivation by ozone concentrations that readily inactivate purified virus. The cell-associated viral samples used in this research contained particles that were 10 to 15 microns in size. Use of a filtration system before ozonation would remove these particles, thereby facilitating inactivation of any remaining viruses associated with cellular fragments.  相似文献   

16.
Ozone inactivation of cell-associated viruses.   总被引:1,自引:0,他引:1       下载免费PDF全文
The inactivation of HEp-2 cell-associated poliovirus (Sabin 1) and coxsackievirus A9 was investigated in three experimental systems, using ozone as a disinfectant. The cell-associated viral samples were adjusted to a turbidity of 5 nephelometric turbidity units. The cell-associated poliovirus and coxsackievirus samples demonstrated survival in a continuous-flow ozonation system at applied ozone dosages of 4.06 and 4.68 mg/liter, respectively, for 30 s. Unassociated viral controls were inactivated by the application of 0.081 mg of ozone per liter for 10 s. Ultrasonic treatment of cell-associated enteric viruses did not increase inactivation of the cell-associated viruses. The batch reactor with a declining ozone residual did not effect total inactivation of either cell-associated enteric virus. These cell-associated viruses were completely inactivated after exposure to ozone in a batch reactor using continuous ozonation. Inactivation of cell-associated poliovirus required a 2-min contact period with an applied ozone dosage of 6.82 mg/liter and a residual ozone concentration of 4.70 mg/liter, whereas the coxsackievirus was completely inactivated after a 5-min exposure to an applied ozone dosage of 4.81 mg/liter with an ozone residual of 2.18 mg/liter. These data indicate that viruses associated with cells or cell fragments are protected from inactivation by ozone concentrations that readily inactivate purified virus. The cell-associated viral samples used in this research contained particles that were 10 to 15 microns in size. Use of a filtration system before ozonation would remove these particles, thereby facilitating inactivation of any remaining viruses associated with cellular fragments.  相似文献   

17.
The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate at neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.  相似文献   

18.
The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate at neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.  相似文献   

19.
PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages (0.5, 1.0, 2.0, and 4.0 mg/liter), four hydrogen peroxide/ozone (H2O2/O3) weight ratios (0, 0.3, 0.5, and 0.8), and four contact times (4, 5, 12, and 16 min) in two source waters--Colorado River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E. coli and MS2 was inactivated at an applied ozone dosage of 2.0 mg/liter (and a 4-min contact time) when the H2O2/O3 ratio was less than or equal to 0.5. Comparative disinfection experiments indicated that free chlorine was the most potent bactericidal agent, followed (in descending order of effectiveness) by ozone, PEROXONE, and chloramines. These results indicate that the PEROXONE process must be optimized for each source water to achieve microbicidal effectiveness.  相似文献   

20.
PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages (0.5, 1.0, 2.0, and 4.0 mg/liter), four hydrogen peroxide/ozone (H2O2/O3) weight ratios (0, 0.3, 0.5, and 0.8), and four contact times (4, 5, 12, and 16 min) in two source waters--Colorado River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E. coli and MS2 was inactivated at an applied ozone dosage of 2.0 mg/liter (and a 4-min contact time) when the H2O2/O3 ratio was less than or equal to 0.5. Comparative disinfection experiments indicated that free chlorine was the most potent bactericidal agent, followed (in descending order of effectiveness) by ozone, PEROXONE, and chloramines. These results indicate that the PEROXONE process must be optimized for each source water to achieve microbicidal effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号