首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
F. R. Cross 《Genetics》1990,126(2):301-308
A dominant mutation (DAF2-2) resulting in resistance to the mating pheromone alpha-factor in Saccharomyces cerevisiae MATa cells was identified and characterized genetically. Whereas wild-type cells induce a high level of the FUS1 mRNA from a low baseline on exposure to alpha-factor, DAF2-2 cells were constitutive producers of an intermediate level of FUS1 RNA; the level was increased only modestly by alpha-factor. FUS1 constitutivity required STE4, STE5 and STE18, but did not require STE2, the alpha-factor receptor gene. DAF2-2 suppressed the alpha-factor supersensitivity of a STE2 C-terminal truncation, and suppressed lethality due to scg1 mutations. Thus DAF2-2 may act by uncoupling the signaling pathway from alpha-factor binding at some point in the pathway between Scg1 inactivation and the action of Ste4, Ste5 and Ste18; this uncoupling might occur at the expense of partial constitutive activation of the pathway. DAF2-2 suppressed the unconditional cell-cycle arrest phenotype of a dominant "constitutive signaling" allele of STE4 (STE4Hpl), although the constitutive FUS1 phenotype of DAF2-2 was suppressed by ste4 null mutations; therefore DAF2-2 may directly affect the performance of the STE4 step.  相似文献   

4.
5.
6.
Pheromone signalling in Saccharomyces cerevisiae is mediated by the STE4-STE18 G-protein beta gamma subunits. A possible target for the subunits is Ste20p, whose structural homolog, the serine/threonine kinase PAK, is activated by GTP-binding p21s Cdc42 and Rac1. The putative Cdc42p-binding domain of Ste20p, expressed as a fusion protein, binds human and yeast GTP-binding Cdc42p. Cdc42p is required for alpha-factor-induced activation of FUS1.cdc24ts strains defective for Cdc42p GDP/GTP exchange show no pheromone induction at restrictive temperatures but are partially rescued by overexpression of Cdc42p, which is potentiated by Cdc42p12V mutants. Epistatic analysis indicates that CDC24 and CDC42 lie between STE4 and STE20 in the pathway. The two-hybrid system revealed that Ste4p interacts with Cdc24p. We propose that Cdc42p plays a pivotal role both in polarization of the cytoskeleton and in pheromone signalling.  相似文献   

7.
8.
9.
The yeast GPA1, STE4, and STE18 genes encode proteins homologous to the respective alpha, beta and gamma subunits of the mammalian G protein complex which appears to mediate the response to mating pheromones. Overexpression of the STE4 protein by the galactose-inducible GAL1 promoter caused activation of the pheromone response pathway which resulted in cell-cycle arrest in late G1 phase and induction of the FUS1 gene expression, thereby suppressing the sterility of the receptor-less mutant delta ste2. Disruption of STE18, in turn, suppressed activation of the pheromone response induced by overexpression of STE4, suggesting that the STE18 product is required for the STE4 action. However, overexpression of both the STE4 and STE18 proteins did not generate a stronger pheromone response than overexpression of STE4 in the presence of wild-type levels of STE18. These results suggest that the beta subunit is the limiting component for the pheromone response and support the idea that beta and gamma subunits act as a positive regulator. Furthermore, overexpression of GPA1 prevented cell-cycle arrest but not FUS1 induction mediated by overexpression of STE4. This implies that the alpha subunit acts as a negative regulator presumably through interacting with beta and gamma subunits in the mating pheromone signaling pathway.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号