首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper compares regression and neural network modeling approaches to predict competitive biosorption equilibrium data. The regression approach is based on the fitting of modified Langmuir-type isotherm models to experimental data. Neural networks, on the other hand, are non-parametric statistical estimators capable of identifying patterns in data and correlations between input and output. Our results show that the neural network approach outperforms traditional regression-based modeling in correlating and predicting the simultaneous uptake of copper and cadmium by a microbial biosorbent. The neural network is capable of accurately predicting unseen data when provided with limited amounts of data for training. Because neural networks are purely data-driven models, they are more suitable for obtaining accurate predictions than for probing the physical nature of the biosorption process.  相似文献   

2.
随着多特征决策研究的深入,传统方法已经不能回答更加细致的问题。细察精确预测的理论、建立模型与数据的形式关系成为更有希望的研究方向。神经网络模型设计用来模拟许多并行的认知和神经行为,具有样例学习和迁移适应能力.在解释和预测方面具有传统方法所不具备的潜力。神经网络能够同时表征线性补偿和非补偿规则,其应用已经渗透到许多学科领域。网络范式对于人事研究和应用也有价值,有研究表明神经网络可以用于人力资源管理的一般领域,成为人事决策研究的新范式。  相似文献   

3.
应用神经网络和多元回归技术预测森林产量   总被引:16,自引:0,他引:16  
应用传统统计技术常会因样本小和测量数据不符某种分布而受到限制。本文评价一种前馈型神经网络算法以预测落叶阔叶林产量。另外,还介绍一种由定性变为定量的数据变换方法,以用相对小的样本建立多元回归预测模型。数据变换方法有助于改善多元回归模型的预测效果。在本实验的条件下,研究结果表明神经网络技术能够产生最好的预测效果.  相似文献   

4.
通过评价31磷磁共振波谱(31Phosphorus Magnetic Resonance Spectroscopy,31P-MRS)来辨别三种诊断类型:肝细胞癌,正常肝和肝硬化。运用反向传输神经网络(BP)和径向基函数神经网络(RBF)分析31P-MRS数据,分别建立神经网络模型,进行肝细胞癌的诊断分类以期提高识别率。实验结果证明,应用神经网络模型后,31P-MR波谱对活体肝细胞癌的诊断正确率从89.47%提高到97.3%,且BP更优于RBF。  相似文献   

5.
Addressing the forecasting issues is one of the core objectives of developing and restructuring of electric power industry in China. However, there are not enough efforts that have been made to develop an accurate electricity consumption forecasting procedure. In this paper, a panel semiparametric quantile regression neural network (PSQRNN) is developed by combining an artificial neural network and semiparametric quantile regression for panel data. By embedding penalized quantile regression with least absolute shrinkage and selection operator (LASSO), ridge regression and backpropagation, PSQRNN keeps the flexibility of nonparametric models and the interpretability of parametric models simultaneously. The prediction accuracy is evaluated based on China's electricity consumption data set, and the results indicate that PSQRNN performs better compared with three benchmark methods including BP neural network (BP), Support Vector Machine (SVM) and Quantile Regression Neural Network (QRNN).  相似文献   

6.
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.  相似文献   

7.
Neural networks have received much attention in recent years mostly by non-statisticians. The purpose of this paper is to incorporate neural networks in a non-linear regression model and obtain maximum likelihood estimates of the network parameters using a standard Newton-Raphson algorithm. We use maximum likelihood estimators instead of the usual back-propagation technique and compare the neural network predictions with predictions of quadratic regression models and with non-parametric nearest neighbor predictions. These comparisons are made using data generated from a variety of functions. Because of the number of parameters involved, neural network models can easily over-fit the data, hence validation of results is crucial.  相似文献   

8.
The modelling of winemaking processes, to predict as far ahead as possible the fermentation performance, is necessary for enhanced supervision and to enable appropriate corrective action to be taken to remedy incorrect fermentation before it is too late. In this paper, we briefly present two heuristic modelling methods—the Group Method of Data Handling (GMDH) and Neural Networks (NN)—which can be used to obtain unstructured models. The identification and prediction performances of the models obtained with these two methods are compared with respect to the alcoholic fermentation rate (dCO2/dt) at five prediction horizons and for four fermentations. It is shown that predictive models obtained with neural network methodology are more accurate than those obtained with GMDH. On the other hand, GMDH models are more versatile when used for the prediction of the fermentation rate of a different fermentation than the one used in the learning process.  相似文献   

9.
Neural networks are investigated for predicting the magnitude of the largest seismic event in the following month based on the analysis of eight mathematically computed parameters known as seismicity indicators. The indicators are selected based on the Gutenberg-Richter and characteristic earthquake magnitude distribution and also on the conclusions drawn by recent earthquake prediction studies. Since there is no known established mathematical or even empirical relationship between these indicators and the location and magnitude of a succeeding earthquake in a particular time window, the problem is modeled using three different neural networks: a feed-forward Levenberg-Marquardt backpropagation (LMBP) neural network, a recurrent neural network, and a radial basis function (RBF) neural network. Prediction accuracies of the models are evaluated using four different statistical measures: the probability of detection, the false alarm ratio, the frequency bias, and the true skill score or R score. The models are trained and tested using data for two seismically different regions: Southern California and the San Francisco bay region. Overall the recurrent neural network model yields the best prediction accuracies compared with LMBP and RBF networks. While at the present earthquake prediction cannot be made with a high degree of certainty this research provides a scientific approach for evaluating the short-term seismic hazard potential of a region.  相似文献   

10.
Neural inhibition has often been regarded as playing an important role in stabilizing and tuning the responses of networks of excitatory neurons. Some partial quantitative bases for this qualitative notion are discussed in the context of current neural network models. Such neural network principles as associative learning, competition, opponent processing, and interlevel resonant feedback are explained and related to behavioral and neurochemical data. Tentative analogies of parts of these model networks with specific neurotransmitter systems are explored; these analogies are likely to become more precise as the networks are further refined.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

11.
Neural networks are increasingly being used in science to infer hidden dynamics of natural systems from noisy observations, a task typically handled by hierarchical models in ecology. This article describes a class of hierarchical models parameterised by neural networks – neural hierarchical models. The derivation of such models analogises the relationship between regression and neural networks. A case study is developed for a neural dynamic occupancy model of North American bird populations, trained on millions of detection/non‐detection time series for hundreds of species, providing insights into colonisation and extinction at a continental scale. Flexible models are increasingly needed that scale to large data and represent ecological processes. Neural hierarchical models satisfy this need, providing a bridge between deep learning and ecological modelling that combines the function representation power of neural networks with the inferential capacity of hierarchical models.  相似文献   

12.
Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.  相似文献   

13.
Neural networks are usually considered as naturally parallel computing models. But the number of operators and the complex connection graph of standard neural models can not be directly handled by digital hardware devices. More particularly, several works show that programmable digital hardware is a real opportunity for flexible hardware implementations of neural networks. And yet many area and topology problems arise when standard neural models are implemented onto programmable circuits such as FPGAs, so that the fast FPGA technology improvements can not be fully exploited. Therefore neural network hardware implementations need to reconcile simple hardware topologies with complex neural architectures. The theoretical and practical framework developed, allows this combination thanks to some principles of configurable hardware that are applied to neural computation: Field Programmable Neural Arrays (FPNA) lead to powerful neural architectures that are easy to map onto FPGAs, thanks to a simplified topology and an original data exchange scheme. This paper shows how FPGAs have led to the definition of the FPNA computation paradigm. Then it shows how FPNAs contribute to current and future FPGA-based neural implementations by solving the general problems that are raised by the implementation of complex neural networks onto FPGAs.  相似文献   

14.
Two neural network models, called clustering-RBFNN and clustering-BPNN models, are created for estimating the work zone capacity in a freeway work zone as a function of seventeen different factors through judicious integration of the subtractive clustering approach with the radial basis function (RBF) and the backpropagation (BP) neural network models. The clustering-RBFNN model has the attractive characteristics of training stability, accuracy, and quick convergence. The results of validation indicate that the work zone capacity can be estimated by clustering-neural network models in general with an error of less than 10%, even with limited data available to train the models. The clustering-RBFNN model is used to study several main factors affecting work zone capacity. The results of such parametric studies can assist work zone engineers and highway agencies to create effective traffic management plans (TMP) for work zones quantitatively and objectively.  相似文献   

15.
Recognition of similar (confusion) characters is a difficult problem in optical character recognition (OCR). In this paper, we introduce a neural network solution that is capable of modeling minor differences among similar characters, and is robust to various personal handwriting styles. The Self-growing Probabilistic Decision-based Neural Network (SPDNN) is a probabilistic type neural network, which adopts a hierarchical network structure with nonlinear basis functions and a competitive credit-assignment scheme. Based on the SPDNN model, we have constructed a three-stage recognition system. First, a coarse classifier determines a character to be input to one of the pre-defined subclasses partitioned from a large character set, such as Chinese mixed with alphanumerics. Then a character recognizer determines the input image which best matches the reference character in the subclass. Lastly, the third module is a similar character recognizer, which can further enhance the recognition accuracy among similar or confusing characters. The prototype system has demonstrated a successful application of SPDNN to similar handwritten Chinese recognition for the public database CCL/HCCR1 (5401 characters x200 samples). Regarding performance, experiments on the CCL/HCCR1 database produced 90.12% recognition accuracy with no rejection, and 94.11% accuracy with 6.7% rejection, respectively. This recognition accuracy represents about 4% improvement on the previously announced performance. As to processing speed, processing before recognition (including image preprocessing, segmentation, and feature extraction) requires about one second for an A4 size character image, and recognition consumes approximately 0.27 second per character on a Pentium-100 based personal computer, without use of any hardware accelerator or co-processor.  相似文献   

16.
The Semantic Pointer Architecture (SPA) is a proposal of specifying the computations and architectural elements needed to account for cognitive functions. By means of the Neural Engineering Framework (NEF) this proposal can be realized in a spiking neural network. However, in any such network each SPA transformation will accumulate noise. By increasing the accuracy of common SPA operations, the overall network performance can be increased considerably. As well, the representations in such networks present a trade-off between being able to represent all possible values and being only able to represent the most likely values, but with high accuracy. We derive a heuristic to find the near-optimal point in this trade-off. This allows us to improve the accuracy of common SPA operations by up to 25 times. Ultimately, it allows for a reduction of neuron number and a more efficient use of both traditional and neuromorphic hardware, which we demonstrate here.  相似文献   

17.
A major challenge confronting neuroscientists is associated with the multiple spatial and temporal scales of investigation of neural structure and function. I shall discuss the use of computational neural modeling as one method to bridge some of the different spatial and temporal levels. This approach will be illustrated using large-scale, neurobiologically realistic network models of auditory and visual pattern recognition that relate neuronal dynamics to fMRI data. It will be demonstrated that the models are capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data.  相似文献   

18.
This paper proposes a framework for training feedforward neural network models capable of handling class overlap and imbalance by minimizing an error function that compensates for such imperfections of the training set. A special case of the proposed error function can be used for training variance-controlled neural networks (VCNNs), which are developed to handle class overlap by minimizing an error function involving the class-specific variance (CSV) computed at their outputs. Another special case of the proposed error function can be used for training class-balancing neural networks (CBNNs), which are developed to handle class imbalance by relying on class-specific correction (CSC). VCNNs and CBNNs are compared with conventional feedforward neural networks (FFNNs), quantum neural networks (QNNs), and resampling techniques. The properties of VCNNs and CBNNs are illustrated by experiments on artificial data. Various experiments involving real-world data reveal the advantages offered by VCNNs and CBNNs in the presence of class overlap and class imbalance.  相似文献   

19.
Wenbin Dai  Lina Wang  Binrui Wang  Xiaohong Cui  Xue Li 《Phyton》2022,91(10):2283-2296
Temperature in agricultural production has a direct impact on the growth of crops. The emergence of greenhouses has improved the impact of the original unpredictable changes in temperature, but the temperature modeling of greenhouses is still the main direction at present. Neural network modeling relies on sufficient actual data to model greenhouses, but there is a widening gap in the application of different neural networks. This paper proposes a greenhouse temperature prediction model based on wavelet neural network with genetic algorithm (GA-WNN). With the simple network structure and the nonlinear adaptability of the wavelet basis function, wavelet neural network (WNN) improved model training speed and accuracy of prediction results compared with back propagation neural networks (BPNN), which was conducive to the prediction and control of short-term greenhouse temperature fluctuations. At the same time, the genetic algorithm (GA) was introduced to globally optimize the initial weights of the original model, which improved the insensitivity of the model to the initial weights and thresholds, and improved the training speed and stability of the model. Finally, simulation results for the greenhouse showed that the model training speed, prediction results accuracy and model stability of the GA-WNN in the greenhouse were improved in comparison to results obtained by the WNN and BPNN in the greenhouse.  相似文献   

20.
目的:比较反向传播算法(BP)神经网络和径向基函数(RBF)神经网络预测老年痴呆症疾病进展的效果。方法:以老年痴呆症随访数据为研究对象,以性别、年龄、受教育程度、有无高血压、有无高胆固醇、有无心脏病、有无中风史、有无家族史8个指标作为输入变量,以五年随访的MMSE差值为输出变量,构建基于BP神经网络和RBF神经网络的老年痴呆症疾病进展预测模型。结果:与BP神经网络模型相比,RBF神经网络预测的结果更好,能够有效地预测老年痴呆症疾病进展。结论:神经网络模型将老年痴呆症疾病进展预测问题转化为随访数据中相关测量指标与MMSE差值的非线性问题,为复杂的老年痴呆症疾病进展预测提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号