首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaperones in control of protein disaggregation   总被引:1,自引:0,他引:1       下载免费PDF全文
The chaperone protein network controls both initial protein folding and subsequent maintenance of proteins in the cell. Although the native structure of a protein is principally encoded in its amino-acid sequence, the process of folding in vivo very often requires the assistance of molecular chaperones. Chaperones also play a role in a post-translational quality control system and thus are required to maintain the proper conformation of proteins under changing environmental conditions. Many factors leading to unfolding and misfolding of proteins eventually result in protein aggregation. Stress imposed by high temperature was one of the first aggregation-inducing factors studied and remains one of the main models in this field. With massive protein aggregation occurring in response to heat exposure, the cell needs chaperones to control and counteract the aggregation process. Elimination of aggregates can be achieved by solubilization of aggregates and either refolding of the liberated polypeptides or their proteolysis. Here, we focus on the molecular mechanisms by which heat-shock protein 70 (Hsp70), Hsp100 and small Hsp chaperones liberate and refold polypeptides trapped in protein aggregates.  相似文献   

2.
Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic. Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the proteins’ aggregation. In the present study, we found that the expression of mutant γPKC-GFP increased the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of mutant γPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant γPKC-GFP by inhibiting this mutant’s degradation. These findings suggest that mutant γPKC increases the level of Hsp70, which protects cells from the mutant’s cytotoxicity by enhancing its degradation.  相似文献   

3.
We systematically analyzed the capability of the major cytosolic chaperones of Escherichia coli to cope with protein misfolding and aggregation during heat stress in vivo and in cell extracts. Under physiological heat stress conditions, only the DnaK system efficiently prevented the aggregation of thermolabile proteins, a surprisingly high number of 150-200 species, corresponding to 15-25% of detected proteins. Identification of thermolabile DnaK substrates by mass spectrometry revealed that they comprise 80% of the large (>/=90 kDa) but only 18% of the small (相似文献   

4.
When eukaryotic cells are exposed to environmental stress such as elevated temperature, the synthesis of heat shock proteins (HSP) is stimulated. We have raised a monoclonal antibody to a 70 kDa cytoskeleton-associated protein; this antibody also appears to recognize HSPs 68, 70 and 90, as well as an additional 40 kDa non-heat shock protein. We have used this monoclonal antibody to study the localization of the 70 kDa protein in the cytoskeletons of NIL8 hamster fibroblasts. By selective sequential solubilization of the components of NIL8 cells and analysis of the resulting cytoskeletal preparations by Western blot technique and indirect immunofluorescence, we have shown that the 70 kDa protein is associated with microtubules in mitotic and interphase cells and comigrates with HSP70 on 2-dimensional gel electrophoretigrams.  相似文献   

5.
Cell polarity, which directs the orientation of asymmetric cell division and segregation of fate determinants, is a fundamental feature of development and differentiation. Regulators of polarity have been extensively studied, and the critical importance of the Par (partitioning-defective) complex as the polarity machinery is now recognized in a wide range of eukaryotic systems. The Par polarity module is evolutionarily conserved, but its mechanism and cooperating factors vary among different systems. Here we describe the cloning and characterization of a pond snail Lymnaea stagnalis homologue of partitioning-defective 6 (Lspar6). The protein product LsPar6 shows high affinity for microtubules and localizes to the mitotic apparatus during embryonic cell division. In vitro assays revealed direct binding of LsPar6 to tubulin and microtubules, which is the first evidence of the direct interaction between the two proteins. The interaction is mediated by two distinct regions of LsPar6 both located in the N-terminal half. Atypical PKC, a functional partner of Par6, was also found to localize to the mitotic spindle. These results suggest that the L. stagnalis Par complex employs the microtubule network in cell polarity processes during the early embryogenesis. Identical sequence and localization of LsPar6 for the dextral and the sinistral snails exclude the possibility of the gene being the primary determinant of handedness.  相似文献   

6.
Molecular chaperones and their associated cofactors form a group of highly specialized proteins that orchestrate the folding and unfolding of other proteins and the assembly and disassembly of protein complexes. Chaperones are found in all cell types and organisms, and their activity must be tightly regulated to maintain normal cell function. Indeed, deregulation of protein folding and protein complex assembly is the cause of various human diseases. Here, we present the results of an extensive review of the literature revealing that the post-translational modification (PTM) of chaperones has been selected during evolution as an efficient mean to regulate the activity and specificity of these key proteins. Because the addition and reciprocal removal of chemical groups can be triggered very rapidly, this mechanism provides an efficient switch to precisely regulate the activity of chaperones on specific substrates. The large number of PTMs detected in chaperones suggests that a combinatory code is at play to regulate function, activity, localization, and substrate specificity for this group of biologically important proteins. This review surveys the core information currently available as a starting point toward the more ambitious endeavor of deciphering the “chaperone code”.  相似文献   

7.
8.
9.
Mouse A6 mesoangioblasts express Hsp70 even in the absence of cellular stress. Its expression and its intracellular localization were investigated under normal growth conditions and under hyperthermic stress. Immunofluorescence assays indicated that without any stress a fraction of Hsp70 co-localized with actin microfilaments, in the cell cortex and in the contractile ring of dividing cells, while the Hsc70 chaperone did not. Hsp70 immunoprecipitation assays confirmed that a portion of Hsp70 binds actin. Immunoblot assays showed that both proteins were present in the nucleus. After heat treatment Hsp70 and actin continued to co-localize in the leading edge of A6 cells but not on microfilaments. Although Hsp70 and Hsc70 are both basally synthesized they showed different cellular distribution, suggesting an Hsp70 different activity respect to the Hsc70 chaperone. Moreover, we found Hsp70 in the culture medium as it has been described in other cell types.  相似文献   

10.
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of ER chaperones and foldases under stress conditions, to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI) or immunophilins, calnexin and calreticulin.Key words: Abiotic stress, chaperones, endoplasmic reticulum, foldases, immunophilins, protein folding, signal transduction  相似文献   

11.
The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.  相似文献   

12.
Molecular chaperones assist de novo protein folding and facilitate the refolding of stress‐denatured proteins. The molecular chaperone concept was coined nearly 35 years ago, and since then, tremendous strides have been made in understanding how these factors support protein folding. Here, we focus on how various chaperone proteins were first identified to play roles in protein folding. Examples are used to illustrate traditional routes of chaperone discovery and point out their advantages and limitations. Recent advances, including the development of folding biosensors and promising methods for the stabilization of proteins in vivo, provide new routes for chaperone discovery.  相似文献   

13.
Hsp70 chaperones mediate folding of proteins and prevent their misfolding and aggregation. We report here on a new kind of Hsp70 interacting protein in mitochondria, Hep1. Hep1 is a highly conserved protein present in virtually all eukaryotes. Deletion of HEP1 results in a severe growth defect. Cells lacking Hep1 are deficient in processes that need the function of mitochondrial Hsp70s, such as preprotein import and biogenesis of proteins containing FeS clusters. In the mitochondria of these cells, Hsp70s, Ssc1 and Ssq1 accumulate as insoluble aggregates. We show that it is the nucleotide-free form of mtHsp70 that has a high tendency to self-aggregate. This process is efficiently counteracted by Hep1. We conclude that Hep1 acts as a chaperone that is necessary and sufficient to prevent self-aggregation and to thereby maintain the function of the mitochondrial Hsp70 chaperones.  相似文献   

14.
15.
Small heat-shock proteins function in the insoluble protein complex   总被引:2,自引:0,他引:2  
Small heat-shock proteins (sHSPs) represent an abundant and ubiquitous family of molecular chaperones. The current model proposes that sHSPs function to prevent irreversible aggregation of non-native proteins by forming soluble complex. The chaperone activity of sHSPs is usually determined by the capacity to suppress thermally or chemically induced protein aggregation. However, sHSPs were frequently found in the insoluble complex particularly in vivo. In this report, it is clearly revealed that the insoluble sHSP/substrate complex is formed when sHSP is overloaded with non-native substrates, which is the very case under in vivo conditions. The proposal that sHSPs function to prevent the protein aggregation seems misleading. sHSPs appear to promote the elimination of protein aggregates by incorporating into the insoluble protein complex.  相似文献   

16.
The role of molecular chaperones in human misfolding diseases   总被引:1,自引:0,他引:1  
Sarah A. Broadley 《FEBS letters》2009,583(16):2647-144
Human misfolding diseases arise when proteins adopt non-native conformations that endow them with a tendency to aggregate and form intra- and/or extra-cellular deposits. Molecular chaperones, such as Hsp70 and TCP-1 Ring Complex (TRiC)/chaperonin containing TCP-1 (CCT), have been implicated as potent modulators of misfolding disease. These chaperones suppress toxicity of disease proteins and modify early events in the aggregation process in a cooperative and sequential manner reminiscent of their functions in de novo protein folding. Further understanding of the role of Hsp70, TRiC, and other chaperones in misfolding disease is likely to provide important insight into basic pathomechanistic principles that could potentially be exploited for therapeutic purposes.  相似文献   

17.
Molecular chaperones of the stress 70 family reversibly bind and release nonnative proteins in a nucleotide-dependent cycle. Purified monoclonal antibodies prepared against spinach (Spinacia oleracea) stress 70 molecular chaperones were used in immunoprecipitation experiments with extracts of spinach leaf tissue pulse-labeled with [35S]methionine in an effort to detect whether low-temperature exposure altered the biogenesis or the native state stability of any proteins leading to the formation of complexes with the stress 70 molecular chaperones. The two monoclonal antibodies used in this research are highly specific for the cytosolic or ER-luminal stress 70 molecular chaperones. Analyses of the immunoprecipitation results indicate that low temperature causes an increased association of some proteins with the two chaperones. The findings are consistent with the hypothesis that normal biogenesis or the conformational stability of specific proteins may be unfavorably altered at low temperature in spinach and perhaps other plants.  相似文献   

18.
Although the ubiquitin-proteasome system and the molecular chaperones are implicated to play an important role in pathogenesis of familial amyotrophic lateral sclerosis (FALS) caused by mutations in Cu/Zn-superoxide dismutase (SOD1), the mechanism underlying the causes of this fatal disease is still poorly understood. Here we found that co-chaperone CHIP (carboxyl terminus of Hsc70-interacting protein), together with molecular chaperones Hsc70/Hsp70 and Hsp90, associates with FALS-linked mutant SOD1 proteins in cultured human cells. S5a subunit of 26S proteasomes, which recognizes polyubiquitylated proteins, also interacts with mutant SOD1 proteins. Over-expression of CHIP leads to the reduction in cellular levels of mutant SOD1 as well as the suppression of cytotoxicity induced by mutant SOD1. Unusually, rather than increasing the level of poly-ubiquitylated SOD1, over-expressed CHIP alters the ubiquitylation pattern of mutant SOD1 proteins. Both down-regulation and ubiquitylation of mutant SOD1 are greatly reduced by a mutant CHIP protein lacking U-box domain. Taken together, these results suggest that co-chaperone CHIP, possibly with another E3 ligase(s), modulates the ubiquitylation of mutant SOD1 and renders them more susceptible for proteasomal degradation.  相似文献   

19.
Heat shock proteins (Hsps) or molecular chaperones, are highly conserved protein families present in all studied organisms. Following cellular stress, the intracellular concentration of Hsps generally increases several folds. Hsps undergo ATP-driven conformational changes to stabilize unfolded proteins or unfold them for translocation across membranes or mark them for degradation. They are broadly classified in several families according to their molecular weights and functional properties. Extensive studies during the past few decades suggest that Hsps play a vital role in both normal cellular homeostasis and stress response. Hsps have been reported to interact with numerous substrates and are involved in many biological functions such as cellular communication, immune response, protein transport, apoptosis, cell cycle regulation, gametogenesis and aging. The present review attempts to provide a brief overview of various Hsps and summarizes their involvement in diverse biological activities.  相似文献   

20.
Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp–substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp–substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号