首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The β2-adrenergic receptor (β2-AR) signaling on bone cells is the major contributor in the effect of the sympathetic nervous system on bone turnover. However, it remains unclear whether receptor activator of nuclear factor κ-Β ligand (RANKL) modulation and neuropeptides expression in osteocytes are responsible for the mechanism. This study used β2-AR stimulation to investigate cell cycle and proliferation, the gene and protein expression of RANKL, and osteoprotegerin (OPG), as well as neuropeptides regulation in osteocytic MLO-Y4 cells. Clenbuterol (CLE; a β2-AR agonist) slightly promoted the growth of MLO-Y4 cells in a concentration-dependent effect but had no effect on the proliferation index. And the concentration of 10−8 M showed a significant increase in the S-phase fraction on day 3 in comparison with the control. Additionally, CLE-promoted osteoclast formation and bone resorption in osteocytic MLO-Y4 cell-RAW264.7 cell cocultures. RANKL expression level and the ratio of RANKL to OPG in MLO-Y4 cells were enhanced in CLE treatment but were rescued by blocking β2-AR signaling. However, neuropeptide Y and α-calcitonin gene-related peptide, two neurogenic markers, were inhibited in CLE treatment of MLO-Y4 cells, which was reversed by a β2-AR blocker. The results indicate that osteocytic β2-AR plays an important role in the regulation of RANKL/OPG and neuropeptides expression, and β2-AR signaling in osteocytes can be used as a new valuable target for osteoclast-related pathologic disease.  相似文献   

2.
3.
4.
Transforming growth factor (TGF)-β1, a cytokine released into the cerebrospinal fluid (CSF) after intraventricular hemorrhage (IVH), stimulates the expression of the components of the extracellular matrix (ECM), which causes progressive ventricular dilatation by impaired CSF absorption. Matrix metalloproteinase-9 (MMP-9), a proteinase involved in the removal of ECM proteins, has been shown to contribute to the resolution of progressive ventricular dilation after IVH. The aim of this study is to clarify the mechanism by which MMP-9 is expressed following IVH. Cultured human meningeal cells were treated with human recombinant TGF-β1. RT-PCR demonstrated that TGF-β1 induced MMP-9 expression in the meningeal cells in a dose-dependent manner. The TGF-β1-induced MMP-9 expression was attenuated in the presence of either MEK or Smad 3 inhibitor. Our data indicated that MMP-9 is released into the CSF from meningeal cells in response to TGF-β1, most probably through the activation of ERK and Smad pathways.  相似文献   

5.
β-Catenin-independent Wnt signaling pathways have been implicated in the regulation of planar cell polarity (PCP) and convergent extension (CE) cell movements. Prickle, one of the core proteins of these pathways, is known to asymmetrically localize proximally at the adherens junction of Drosophila melanogaster wing cells and to locally accumulate within plasma membrane subdomains in cells undergoing CE movements during vertebrate development. Using mass spectrometry, we have identified the Ste20 kinase Mink1 as a Prickle-associated protein and found that they genetically interact during the establishment of PCP in the Drosophila eye and CE in Xenopus laevis embryos. We show that Mink1 phosphorylates Prickle on a conserved threonine residue and regulates its Rab5-dependent endosomal trafficking, a process required for the localized plasma membrane accumulation and function of Prickle. Mink1 also was found to be important for the clustering of Vangl within plasma membrane puncta. Our results provide a link between Mink and the Vangl-Prickle complex and highlight the importance of Prickle phosphorylation and endosomal trafficking for its function during Wnt-PCP signaling.  相似文献   

6.
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/β-catenin pathway in IPF. The potential impact of WNT/β-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/β-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16–24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/β-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/β-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/β-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/β-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/β-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.  相似文献   

7.
Human adult bone marrow-derived skeletal stem cells a.k.a mesenchymal stem cells (hMSCs) have been shown to be precursors of several different cellular lineages, including osteoblast, chondrocyte, myoblast, adipocyte, and fibroblast. Several studies have shown that cooperation between transforming growth factor β (TGF-β) and Wnt/β-catenin signaling pathways plays a role in controlling certain developmental events and diseases. Our previous data showed that agents like TGF-β, cooperation with Wnt signaling, promote chondrocyte differentiation at the expense of adipocyte differentiation in hMSCs. In this study, we tested mechanisms by which TGF-β activation of β-catenin signaling pathway and whether these pathways interact during osteoblast differentiation of hMSCs. With selective small chemical kinase inhibitors, we demonstrated that TGF-β1 requires TGF-β type I receptor ALK-5, Smad3, phosphoinositide 3-kinases (PI3K), and protein kinase A (PKA) to stabilize β-catenin, and needs ALK-5, PKA, and JNK to inhibit osteoblastogenesis in hMSCs. Knockdown of β-catenin with siRNA stimulated alkaline phosphatase activity and antagonized the inhibitory effects of TGF-β1 on bone sialoprotein (BSP) expression, suggested that TGF-β1 cooperated with β-catenin signaling in inhibitory of osteoblastogenesis in hMSCs. In summary, TGF-β1 activates β-catenin signaling pathway via ALK-5, Smad3, PKA, and PI3K pathways, and modulates osteoblastogenesis via ALK5, PKA, and JNK pathways in hMSCs; the interaction between TGF-β and β-catenin signaling supports the view that β-catenin signaling is a mediator of TGF-β's effects on osteoblast differentiation of hMSCs.  相似文献   

8.
9.
Dry age-related macular degeneration (AMD), accounting for approximately 90% of AMD cases, is characterized by photoreceptor death, retinal pigment epithelium (RPE) dysfunction and, ultimately, geographic atrophy – the localized death of RPE leading to loss of the center of the visual field. The pathological etiology of AMD is multifactorial, but innate immune signaling and inflammation are involved in early stages of the disease. Although numerous single-nucleotide polymorphisms in innate immune genes are associated with dry AMD, no single gene appears to cause dry AMD.Here, we hypothesized that activation of TLR3 potentiates expression of TLR3 itself and the NFκB-p65 (RelA) subunit as part of pro-inflammatory RPE signaling. Furthermore, we hypothesized that TLR3 activation can ‘prime’ cells to future RelA stimulation, leading to enhanced, persistent RelA expression and signaling following a second TLR3 activation. We used the human RPE-derived cell line ARPE-19 as a model system for RPE signaling and measured NFκB expression and activity in response to TLR3 stimulation with its ligand, polyinosinic:polycytidylic acid (pI:C).Activation of TLR3 with pI:C led to increased TLR3 and RelA expression that was sustained for at least 24 h. Cells exposed for a second time to pI:C after an initial pI:C exposure displayed elevated RelA expression and RelA nuclear translocation above the level generated by individual primary or secondary exposures alone. Such an elevated response could also not be generated by a single application of higher concentrations of the agonist pI:C. Additionally, we determined the mechanism for TLR3 mediated TLR3 and RelA expression by using inhibitors of canonical TLR3-TBK1-IKKε and JAK-STAT signaling pathways.These data suggest that initial exposure of ARPE-19 cells to pI:C upregulates TLR3 and RelA signaling, leading to potentiated and persistent RelA signaling potentially generated by a positive feedback loop that may cause exacerbated inflammation in AMD. Furthermore, inhibition of JAK-STAT signaling may be a possible therapeutic treatment to prevent induction of TLR3 expression subsequent to pI:C exposure. Our results identify possible therapeutic targets to reduce the TLR3 positive feedback loop and subsequent overproduction of pro-inflammatory cytokines in RPE cells.  相似文献   

10.
BackgroundDemethyleneberberine (DMB) is a natural active component of medicinal plant Cortex phellodendri chinensis with favorable bioactivity. However, the role of DMB in suppressing non-small cell lung cancer (NSCLC) remains unknown.PurposeIn this study, we aimed to examine the effect and underlying mechanism of DMB in suppressing NSCLC.MethodsCCK8 assay and colony formation assay were utilized to assess the efficiency of DMB on the viability and colony formation capacity of NSCLC cells. Flow cytometry and β-Galactosidase Staining Kit were utilized to determine the efficiency of DMB on the cell cycle and cellular senescence of NSCLC cells. RT-qPCR and Western blot were used to detect the effect of DMB on cell cycle and cellular senescence related gene and protein expression of NSCLC cells. In vivo tumor model was established to evaluate the anti NSCLC effect of DMB. In addition, RNA-seq analysis was performed to detect the differential gene expression after DMB treatments.ResultsIn this study, we revealed that DMB exhibits efficient inhibitory effect on NSCLC cell proliferation and tumor xenografts growth in vivo. We also demonstrated that DMB could inhibit cell migration by suppressing epithelial-mesenchymal transition (EMT) and trigger cell cycle arrest by down-regulating the expression of cell cycle related genes in NSCLC cells. In addition, DMB treatment efficiently induces cellular senescence of NSCLC cells. From the RNA-seq analysis, we found that DMB accelerates senescence through suppressing HIF-1α expression, which was further elucidated by overexpressing HIF-1α in NSCLC to reduce the inhibitory effect of DMB. Furthermore, we also revealed that DMB decreases the expression of c-Myc, an up-stream protein of HIF-1α.ConclusionsTaken together, we first report that DMB inhibits NSCLC progress through inducing cell cycle arrest and triggering cellular senescence by downregulating c-Myc/HIF-1α pathway.  相似文献   

11.
Secreted protein, acidic and rich in cysteine (SPARC) has been characterized as an oncoprotein in esophageal squamous cell carcinoma (ESCC), but its involvement in the pathological development of esophageal adenocarcinoma (ESAD) remains poorly understood. In this study, we aimed to explore the sources of SPARC in the tumor microenvironment (TME) and its functional role in ESAD. Bioinformatic analysis was conducted using data from The Cancer Genome Atlas (TCGA)-esophageal cancer (ESCA) and Genotype-Tissue Expression (GTEx). ESAD tumor cell line OE33 and OE19 cells were used as in vitro cell models. Results showed that SPARC upregulation was associated with unfavorable disease-specific survival (DSS) in ESAD. ESAD tumor cells (OE33 and OE19) had no detectable SPARC protein expression. In contrast, IHC staining in ESAD tumor tissues suggested that peritumoral stromal cells (tumor-associated fibroblasts and macrophages) were the dominant SPARC source in TME. Exogenous SPARC induced partial epithelial-to-mesenchymal transition of ESAD cells, reflected by reduced CDH1 and elevated ZEB1/VIM expression at both mRNA and protein levels. Besides, exogenous SPARC enhanced tumor cell invasion. When TGFBR2 expression was inhibited, the activation of TGF-β signaling induced by exogenous SPARC was impaired. However, the activating effects were rescued by overexpressing mutant TGFBR2 resistant to the shRNA sequence. Copresence of exogenous SPARC and TGF-β1 induced higher expression of mesenchymal markers and enhanced the invading capability of ESAD cells than TGF-β1 alone. In conclusion, this study suggests a potential cross-talk between ESAD tumor stromal cells and cancer cells via a SPARC-TGF-β1 paracrine network.  相似文献   

12.
To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
The non-classical HLA class I antigen HLA-G contributes to immune escape mechanisms in glioblastoma multiforme (GBM). We have previously shown that IL-1β–HIF-1α axis connects inflammatory and oncogenic pathways in GBM. In this study, we investigated the role of IL-1β induced inflammation in regulating HLA-G expression. IL-1β increased HLA-G and Toll like receptor 4 (TLR4) expression in a HIF-1α dependent manner. Inhibition of TLR4 signaling abrogated IL-1β induced HLA-G. IL-1β increased HMGB1 expression and its interaction with TLR4. Inhibition of HMGB1 inhibited TLR4 and vice versa suggesting the existence of HMGB1–TLR4 axis in glioma cells. Interestingly, HMGB1 inhibition prevented IL-1β induced HLA-G expression. Elevated levels of HMGB1 and β-defensin 3 were observed in GBM tumors. Importantly, β-defensin-3 prevented IL-1β induced HLA-G, TLR4, HMGB1 expression and release of pro-inflammatory mediators. Our studies indicate that β-defensin-3 abrogates IL-1β induced HLA-G expression by negatively affecting key molecules associated with its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号