首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mammalian target of rapamycin (mTOR) functions with raptor and mLST8 in a signaling complex that controls rates of cell growth and proliferation. Recent results indicate that an inhibitor of the Ras signaling pathway, farnesylthiosalicylic acid (FTS), decreased phosphorylation of the mTOR effectors, PHAS-I and S6K1, in breast cancer cells. Here we show that incubating 293T cells with FTS produced a stable change in mTOR activity that could be measured in immune complex kinase assays using purified PHAS-I as substrate. Similarly, FTS decreased the PHAS-I kinase activity of mTOR when added to cell extracts or to immune complexes containing mTOR. Incubating either cells or extracts with FTS also decreased the amount of raptor that coimmunoprecipitated with mTOR, although having relatively little effect on the amount of mLST8 that coimmunoprecipitated. The concentration effect curves of FTS for inhibition of mTOR activity and for dissociation of the raptor-mTOR complex were almost identical. Caffeine, wortmannin, LY294002, and rapamycin-FKBP12 also markedly inhibited mTOR activity in vitro, but unlike FTS, none of the other mTOR inhibitors appreciably changed the amount of raptor associated with mTOR. Thus, our findings indicate that FTS represents a new type of mTOR inhibitor, which acts by dissociating the functional mTOR-raptor signaling complex.  相似文献   

2.
In higher eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Deregulation of PI3K/Akt signaling is linked to human diseases, including cancer and metabolic disorders. The PI3K-dependent signaling kinase complex mTORC2 (mammalian target of rapamycin complex 2) has been defined as the regulatory Ser-473 kinase of Akt. The regulation of mTORC2 remains very poorly characterized. We have reconstituted mTORC2 by its assembly in vitro or by co-expression its four essential components (rictor, SIN1, mTOR, mLST8). We show that the functional mTOR kinase domain is required for the mTORC2 activity as the Ser-473 kinase of Akt. We also found that mTOR by phosphorylation of SIN1 prevents its lysosomal degradation. Thus, the kinase domain of mTOR is required for the functional activity of mTORC2, and it controls integrity of mTORC2 by maintaining the protein stability of SIN1.  相似文献   

3.
Mammalian target of rapamycin (mTOR) is a kinase that plays a key role in a wide array of cellular processes and exists in two distinct functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although mTORC2 is primarily activated by growth factors, mTORC1 is regulated by numerous extracellular and intracellular signals such as nutrients, growth factors, and cellular redox. Previous study has shown that cysteine oxidants sufficiently activate mTORC1 activity under amino acid-depleted conditions and that a reducing agent effectively suppresses amino acid-induced mTORC1 activity, thereby raising the possibility that redox-sensitive mechanisms underlie amino acid-dependent mTORC1 regulation. However, the molecular mechanism by which redox regulates mTORC1 activity is not well understood. In this study, we show that the redox-sensitive regulation of mTORC1 occurs via Rheb but not the Rag small GTPase. Enhancing cellular redox potential with cysteine oxidants significantly increases Rheb GTP levels. Importantly, modulation of the cellular redox potential with a cysteine oxidant or reducing agent failed to alter mTORC1 activity in TSC1(-/-) or TSC2(-/-) mouse embryonic fibroblast cells. Furthermore, a cysteine oxidant has little effect on mTOR localization but sufficiently activates mTORC1 activity in both p18(-/-) and control mouse embryonic fibroblast cells, suggesting that the redox-sensitive regulation of mTORC1 occurs independent of the Ragulator·Rag complex. Taken together, our results suggest that the TSC complex plays an important role in redox-sensitive mTORC1 regulation and argues for the activation of mTORC1 in places other than the lysosome upon inhibition of the TSC complex.  相似文献   

4.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

5.
The activity of mammalian target of rapamycin (mTOR) complexes regulates essential cellular processes, such as growth, proliferation, or survival. Nutrients such as amino acids are important regulators of mTOR complex 1 (mTORC1) activation, thus affecting cell growth, protein synthesis, and autophagy. Here, we show that amino acids may also activate mTOR complex 2 (mTORC2). This activation is mediated by the activity of class I PI3K and of Akt. Amino acids induced a rapid phosphorylation of Akt at Thr-308 and Ser-473. Whereas both phosphorylations were dependent on the presence of mTOR, only Akt phosphorylation at Ser-473 was dependent on the presence of rictor, a specific component of mTORC2. Kinase assays confirmed mTORC2 activation by amino acids. This signaling was functional, as demonstrated by the phosphorylation of Akt substrate FOXO3a. Interestingly, using different starvation conditions, amino acids can selectively activate mTORC1 or mTORC2. These findings identify a new signaling pathway used by amino acids underscoring the crucial importance of these nutrients in cell metabolism and offering new mechanistic insights.  相似文献   

6.
Phosphatidic acid (PA) is a critical mediator of mitogenic activation of mammalian target of rapamycin complex 1 (mTORC1) signaling, a master regulator of mammalian cell growth and proliferation. The mechanism by which PA activates mTORC1 signaling has remained unknown. Here, we report that PA selectively stimulates mTORC1 but not mTORC2 kinase activity in cells and in vitro. Furthermore, we show that PA competes with the mTORC1 inhibitor, FK506 binding protein 38 (FKBP38), for mTOR binding at a site encompassing the rapamycin-FKBP12 binding domain. This leads to PA antagonizing FKBP38 inhibition of mTORC1 kinase activity in vitro and rescuing mTORC1 signaling from FKBP38 in cells. Phospholipase D 1, a PA-generating enzyme that is an established upstream regulator of mTORC1, is found to negatively affect mTOR-FKBP38 interaction, confirming the role of endogenous PA in this regulation. Interestingly, removal of FKBP38 alone is insufficient to activate mTORC1 kinase and signaling, which require PA even when the FKBP38 level is drastically reduced by RNAi. In conclusion, we propose a dual mechanism for PA activation of mTORC1: PA displaces FKBP38 from mTOR and allosterically stimulates the catalytic activity of mTORC1.  相似文献   

7.
The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt.  相似文献   

8.
Traumatic brain injury (TBI) provokes primary and secondary damage on endothelium and brain parenchyma, leading neurons die rapidly by necrosis. The mammalian target of rapamycin signalling pathway (mTOR) manages numerous aspects of cellular growth, and it is up-regulated after moderate to severe traumatic brain injury (TBI). Currently, the significance of this increased signalling event for the recovery of brain function is unclear; therefore, we used two different selective inhibitors of mTOR activity to discover the functional role of mTOR inhibition in a mouse model of TBI performed by a controlled cortical impact injury (CCI). Treatment with KU0063794, a dual mTORC1 and mTORC2 inhibitor, and with rapamycin as well-known inhibitor of mTOR, was performed 1 and 4 hours subsequent to TBI. Results proved that mTOR inhibitors, especially KU0063794, significantly improved cognitive and motor recovery after TBI, reducing lesion volumes. Also, treatment with mTOR inhibitors ameliorated the neuroinflammation associated with TBI, showing a diminished neuronal death and astrogliosis after trauma. Our findings propose that the involvement of selective mTORC1/2 inhibitor may represent a therapeutic strategy to improve recovery after brain trauma.  相似文献   

9.
Leucyl-tRNA synthetase (LRS) plays an important role in amino acid-dependent mTORC1 signaling, which is known to be associated with cellular metabolism and proliferation. Therefore, LRS-targeting small molecules that can suppress mTORC1 activation may provide an alternative strategy to current anticancer therapy. In this work, we developed a library of leucyladenylate sulfate analogues by extensively modifying three different pharmacophoric regions comprising adenine, ribose and leucine. Several effective compounds were identified by cell-based mTORC1 activation assays and further tested for anticancer activity. The selected compounds mostly exhibited selective cytotoxicity toward five different cancer cell lines, supporting the hypothesis that the LRS-mediated mTORC1 pathway is a promising alternative target to current therapeutic approaches.  相似文献   

10.
11.
Lysosomal Ca2+ release channel TRPML1 has been suggested to regulate lysosome size by activating calmodulin (CaM). To further understand how TRPML1 and CaM regulate lysosome size, in this study, we report that inhibiting mTORC1 causes enlarged lysosomes, and the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. We also show that lysosome vacuolation induced by inhibiting TRPML1 is corrected by mTORC1 upregulation, and the facilitating effect of TRPML1 on the recovery of enlarged lysosomes is suppressed by inhibiting mTORC1. In the meantime, lysosome vacuolation induced by inhibiting CaM is corrected by mTORC1 upregulation, and mTORC1 overexpression corrects the inhibitory effect of CaM antagonist on the recovery of enlarged lysosomes. Conversely, the vacuolation induced by suppressing mTORC1 is not corrected by upregulating CaM. These data suggest that mTORC1 functions downstream of TRPML1 and CaM to regulate lysosome size. Together with our recent finding showing that TRPML1, CaM and mTORC1 form a macromolecular complex to control mTORC1 activity, we suggest that TRPML1 and CaM control lysosome fission through regulating mTORC1, identifying an mTORC1-dependent molecular mechanism for lysosomal membrane fission.  相似文献   

12.
Metabolic reprogramming is a hallmark of cancer cells, but the mechanisms are not well understood. The mammalian target of rapamycin complex 2 (mTORC2) controls cell growth and proliferation and plays a critical role in metabolic reprogramming in glioma. mTORC2 regulates cellular processes such as cell survival, metabolism, and proliferation by phosphorylation of AGC kinases. Components of mTORC2 are shown to localize to the nucleus, but whether mTORC2 modulates epigenetic modifications to regulate gene expression is not known. Here, we identified histone H3 lysine 56 acetylation (H3K56Ac) is regulated by mTORC2 and show that global H3K56Ac levels were downregulated on mTORC2 knockdown but not on mTORC1 knockdown. mTORC2 promotes H3K56Ac in a tuberous sclerosis complex 1/2 (TSC1/2) mediated signaling pathway. We show that knockdown of sirtuin6 (SIRT6) prevented H3K56 deacetylation in mTORC2 depleted cells. Using glioma model consisting of U87EGFRvIII cells, we established that mTORC2 promotes H3K56Ac in glioma. Finally, we show that mTORC2 regulates the expression of glycolytic genes by regulating H3K56Ac levels at the promoters of these genes in glioma cells and depletion of mTOR leads to increased recruitment of SIRT6 to these promoters. Collectively, these results identify mTORC2 signaling pathway positively promotes H3K56Ac through which it may mediate metabolic reprogramming in glioma.  相似文献   

13.
mTOR complex 1 (mTORC1) is a multiprotein complex that integrates diverse signals including growth factors, nutrients, and stress to control cell growth. Raptor is an essential component of mTORC1 that functions to recruit specific substrates. Recently, Raptor was suggested to be a key target of regulation of mTORC1. Here, we show that Raptor is phosphorylated by JNK upon osmotic stress. We identified that osmotic stress induces the phosphorylation of Raptor at Ser-696, Thr-706, and Ser-863 using liquid chromatography-tandem mass spectrometry. We found that JNK is responsible for the phosphorylation. The inhibition of JNK abolishes the phosphorylation of Raptor induced by osmotic stress in cells. Furthermore, JNK physically associates with Raptor and phosphorylates Raptor in vitro, implying that JNK is responsible for the phosphorylation of Raptor. Finally, we found that osmotic stress activates mTORC1 kinase activity in a JNK-dependent manner. Our findings suggest that the molecular link between JNK and Raptor is a potential mechanism by which stress regulates the mTORC1 signaling pathway.  相似文献   

14.
Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.  相似文献   

15.
The mammalian target of rapamycin (mTOR) is a critical sensor of nutritional sufficiency. Although much is known about the regulation of mTOR in response to growth factors, much less is known about the regulation of mTOR in response to nutrients. Amino acids have no impact on the signals that regulate Rheb, a GTPase required for the activation of mTOR complex 1 (mTORC1). Phospholipase D (PLD) generates a metabolite, phosphatidic acid, that facilitates association between mTOR and the mTORC1 co-factor Raptor. We report here that elevated PLD activity in human cancer cells is dependent on both amino acids and glucose and that amino acid- and glucose-induced increases in mTORC1 activity are dependent on PLD. Amino acid- and glucose-induced PLD and mTORC1 activity were also dependent on the GTPases RalA and ARF6 and the type III phosphatidylinositol-3-kinase hVps34. Thus, a key stimulatory event for mTORC1 activation in response to nutrients is the generation of phosphatidic acid by PLD.  相似文献   

16.
Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH.  相似文献   

17.
TBK1 responds to microbes to initiate cellular responses critical for host innate immune defense. We found previously that TBK1 phosphorylates mTOR (mechanistic target of rapamycin) on S2159 to increase mTOR complex 1 (mTORC1) signaling in response to the growth factor EGF and the viral dsRNA mimetic poly(I:C). mTORC1 and the less well studied mTORC2 respond to diverse cues to control cellular metabolism, proliferation, and survival. Although TBK1 has been linked to Akt phosphorylation, a direct relationship between TBK1 and mTORC2, an Akt kinase, has not been described. By studying MEFs lacking TBK1, as well as MEFs, macrophages, and mice bearing an Mtor S2159A knock-in allele (MtorA/A) using in vitro kinase assays and cell-based approaches, we demonstrate here that TBK1 activates mTOR complex 2 (mTORC2) directly to increase Akt phosphorylation. We find that TBK1 and mTOR S2159 phosphorylation promotes mTOR-dependent phosphorylation of Akt in response to several growth factors and poly(I:C). Mechanistically, TBK1 coimmunoprecipitates with mTORC2 and phosphorylates mTOR S2159 within mTORC2 in cells. Kinase assays demonstrate that TBK1 and mTOR S2159 phosphorylation increase mTORC2 intrinsic catalytic activity. Growth factors failed to activate TBK1 or increase mTOR S2159 phosphorylation in MEFs. Thus, basal TBK1 activity cooperates with growth factors in parallel to increase mTORC2 (and mTORC1) signaling. Collectively, these results reveal cross talk between TBK1 and mTOR, key regulatory nodes within two major signaling networks. As TBK1 and mTOR contribute to tumorigenesis and metabolic disorders, these kinases may work together in a direct manner in a variety of physiological and pathological settings.  相似文献   

18.
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome with manifestations that can include seizures, mental retardation, autism, and tumors in the brain, retina, kidney, heart, and skin. The products of the TSC1 and TSC2 genes, hamartin and tuberin, respectively, heterodimerize and inhibit the mammalian target of rapamycin (mTOR). We found that tuberin expression increases p42/44 MAPK phosphorylation and B-Raf kinase activity. Short interfering RNA down-regulation of tuberin decreased the p42/44 MAPK phosphorylation and B-Raf activity. Expression of Rheb, the target of the GTPase-activating domain of tuberin, inhibited wild-type B-Raf kinase but not activated forms of B-Raf. The interaction of endogenous Rheb with B-Raf was enhanced by serum and by Ras overexpression. A farnesylation-defective mutant of Rheb co-immunoprecipitated with and inhibited B-Raf but did not activate ribosomal protein S6 kinase, indicating that farnesylation is not required for B-Raf inhibition by Rheb and that B-Raf inhibition and S6 kinase activation are separable activities of Rheb. Consistent with this, inhibition of B-Raf and p42/44 MAPK by Rheb was resistant to rapamycin in contrast to Rheb activation of S6 kinase, which is rapamycin-sensitive. Taken together these data demonstrate that inhibition of B-Raf kinase via Rheb is an mTOR-independent function of tuberin.  相似文献   

19.
Intestinal cell kinase (ICK), named after its cloning origin, the intestine, is actually a ubiquitously expressed and highly conserved serine/threonine protein kinase. Recently we reported that ICK supports cell proliferation and G(1) cell cycle progression. ICK deficiency significantly disrupted the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling events. However, the biological substrates that mediate the downstream signaling effects of ICK in proliferation and the molecular mechanisms by which ICK interacts with mTORC1 are not well defined. Our prior studies also provided biochemical evidence that ICK interacts with the mTOR/Raptor complex in cells and phosphorylates Raptor in vitro. In this report, we investigated whether and how ICK targets Raptor to regulate the activity of mTORC1. Using the ICK substrate consensus sequence [R-P-X-S/T-P/A/T/S], we identified a putative phosphorylation site, RPGT908T, for ICK in human Raptor. By mass spectrometry and a phospho-specific antibody, we showed that Raptor Thr-908 is a novel in vivo phosphorylation site. ICK is able to phosphorylate Raptor Thr-908 both in vitro and in vivo and when Raptor exists in protein complexes with or without mTOR. Although expression of the Raptor T908A mutant did not affect the mTORC1 integrity, it markedly impaired the mTORC1 activation by insulin or by overexpression of the small GTP-binding protein RheB under nutrient starvation. Our findings demonstrate an important role for ICK in modulating the activity of mTORC1 through phosphorylation of Raptor Thr-908 and thus implicate a potential signaling mechanism by which ICK regulates cell proliferation and division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号