共查询到20条相似文献,搜索用时 46 毫秒
1.
植物内生菌活性代谢产物最新研究进展 总被引:1,自引:0,他引:1
内生菌广泛存在于植物组织中,作为一种新型的微生物资源,具有丰富的物种多样性,也是发掘新型天然活性物质的重要途径之一,有些内生菌还能产生与宿主植物相同或相似的活性成分。因此从植物内生菌中挖掘抗菌尤其抗临床耐药菌、抗肿瘤等天然活性产物不仅为新药的研发提供了新的方向,还能在一定程度上解决传统的天然产物药源——药用植物生长缓慢、资源紧缺等问题。从多个角度概述了近年来国内外报道的植物内生菌次生代谢产物及其来源、生物活性等方面的主要成果和最新进展,以期为植物内生菌活性代谢产物的研究提供参考。 相似文献
2.
植物体内成分是实时反映其生理状态的最直接指标,是其遭受生物或非生物胁迫应激状态的体现,微生物与植物的共生抗逆亦由代谢的重置与调控得以实现.内生菌可以自身细胞功能或代谢产物调控宿主代谢,其自身可产生独特的、显著区别于宿主的代谢成分参与抗逆;而宿主内环境的长期“驯化”亦可改变内生菌的表型和代谢.较全面地分析了植物与微生物共... 相似文献
3.
植物内生菌及其次级代谢产物的研究进展 总被引:3,自引:0,他引:3
植物内生菌经过与寄主植物长期的协同进化,成为植物内生态系统的重要组成部分,在植物的生长发育、营养吸收、胁迫应激以及产生次级代谢产物等生理生化行为方面具有显著的作用。利用植物内生菌及其次级代谢产物,可以促进农作物的生长发育、提高抗逆性,对于农业生产具有重大的研究意义和应用价值。综述了植物内生菌及其次级代谢产物生理功能及在农业生产中应用的研究进展。对植物内生菌及其次级代谢产物未来的研究重点和应用前景做出展望。 相似文献
4.
植物内生菌及其活性代谢产物 总被引:17,自引:1,他引:17
植物内生茵是一种新的微生物资源,具有潜在的应用价值。近年来,从植物内生茵中寻找新的生物活性物质的研究方兴未艾。对近年来从植物内生茵中发现的抗肿瘤、抗茵、抗病毒、杀虫、免疫抑制、抗氧化、降糖等活性化合物及其相应的产生茵的研究作一简要综述。 相似文献
5.
植物在生长发育过程中因遭遇多种逆境的威胁而出现营养流失、产量大幅下降等问题,而使用传统的化学农药调控植物抗逆作用会对环境造成严重污染甚至危及人类健康,因此需要从天然成分中寻找合适的农药代替品.生活在每种植物体内的内生菌几乎都是植物微生态系统中的天然成分,因其特殊的生态位而可能对植物具有更加积极和直接的影响.然而目前,关于内生菌在提高宿主生物胁迫抗性等方面的作用机制还知之甚少.该文就植物内生菌的来源、多样性和对生物胁迫的抗性展开叙述.首先,总结了植物内生菌传播的主要方式,即水平传播和垂直传播;其次对内生菌种类的多样性以及在植物中的分布多样性进行了归纳与分析;最后,详细阐述了植物内生菌增强植物对生物胁迫应激耐受性(抗致病菌病害、抗虫害)的基本特点与作用机制,即植物内生菌可利用生态位竞争或营养位竞争产生的诱导抗性遏制病原菌感染,或合成抗生素类、生物碱类、几丁质类等次生代谢产物抑制病原菌或线虫的生长,从而防治病虫害.此外,基于内生菌增强植物生物胁迫抗性的研究现状进行了展望,为更加环保的生物防治制剂的开发与利用提供了参考. 相似文献
6.
7.
8.
9.
近年研究发现许多药用植物中的活性成分产量低下或副作用大、不利于人体吸收,而内生菌存在于健康植物的组织或器官中,可以对植物次生代谢产物进行转化且具有条件温和、专一有效、收效率高等特点。本文主要对近几年内生菌对植物次生代谢产物转化的研究进行综述和展望,以期为内生菌资源的开发和利用提供参考价值。 相似文献
10.
内生菌协同宿主植物修复土壤复合污染的研究进展 总被引:2,自引:0,他引:2
土壤复合污染日益严重,危及植物生长及人类发展,寻找修复土壤复合污染的有效方法已经成为环境领域的优先事项。复合污染指同一环境中存在两种或两种以上的污染物,分为复合重金属污染、复合有机污染物污染及重金属-有机污染物复合污染。近些年发现内生菌能定殖在植物中,并且被感染的植物不会引起任何外在病症,其主要通过促进宿主植物生长,改变植物摄取污染物能力和酶促降解污染物等方法增强植物修复能力。本文综述了具有复合重金属和复合有机污染抗性的内生菌种类及其作用机制,并展望了内生菌协同宿主植物修复环境中复合污染物的研究方向。 相似文献
11.
氮素形态配比对菜用大豆籽粒膨大过程中氮碳同化的影响 总被引:2,自引:0,他引:2
以菜用大豆品种‘理想95-1'为试材,通过蛭石盆栽试验研究了氮素不同形态配比对菜用大豆籽粒膨大过程中碳氮代谢的影响.结果表明:营养液中增加适当的铵态氮比例(25%~50%)有利于菜用大豆的生长发育,菜用大豆植株和荚果干鲜重、干物率显著增加,尤以硝铵比为75∶25最为显著.在高比例的硝态氮(100%)或铵态氮(75%)处理下,菜用大豆籽粒的硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性分别显著升高,氮代谢显著增强,可溶性蛋白含量迅速增加,但同期的籽粒淀粉酶活性较低,可溶性糖和淀粉含量显著下降,碳代谢受到显著抑制.在硝铵比为75∶25时,菜用大豆籽粒氮代谢强度适中,同期碳代谢显著增强,籽粒可溶性糖和淀粉含量显著升高,能维持籽粒正常的生理代谢,有利于菜用大豆籽粒发育过程中营养物质的积累.可见,硝态氮和铵态氮配比能显著影响菜用大豆籽粒发育过程中的碳氮代谢,籽粒碳氮代谢与其产量密切相关,可通过调节硝铵比来获得理想菜用大豆产量. 相似文献
12.
The symbiotic root nodule, an organ formed on leguminous plants, is a product of successful interactions between the host plant and the soil bacteria, Rhizobium spp. Plant hormones play an important role in the genesis of this organ. The hormonal balance appears to be modulated by the signals produced by bacteria. Many host genes induced during nodule organogenesis and the symbiotic state have been identified and characterized from several legumes. These genes encode nodule-specific proteins (nodulins) which perform diverse functions in root nodule development and metabolism. Formation of a subcellular compartment housing the bacteria is essential to sustain the symbiotic state, and several nodulins are involved in maintaining the integrity and function of this compartment. The bacteroid enclosed in the perbacteroid membrane behaves as an 'organelle,'completely dependent on the host for all its requirements for carbon, nitrogen and other essential elements. Thus it seems likely that the nodulins in the peribacteroid membrane perform specific transport functions. While the function of a few other nodulins is known (e.g. nodulin-100, nodulin-35), a group of uncharacterized nodulins exists in soybean root nodules. These nodulins share structural similarities and seem to have been derived from a common ancestor. Induction of nodulin genes occurs prior to and independent of nitrogen fixation, and thus is a prelude to symbiosis. Although some of the early nodulin genes are induced prior to or during infection, induction of late nodulins requires endocytotic release of bacteria. 相似文献
13.
Field and greenhouse experiments were conducted to assess the nitrogen fixation rates of four cultivars of common bean (Phaseolus vulgaris L.) at different growth stages. The 15N isotope dilution technique was used to quantify biological nitrogen fixation. In the greenhouse, cultivars M4403 and Kallmet accumulated 301 and 189 mg N plant–1, respectively, up to 63 days after planting (DAP) of which 57 and 43% was derived from atmosphere. Under field conditions, cultivars Bayocel and Flor de Mayo RMC accumulated in 77 DAP, 147 and 135 kg N ha–1, respectively, of which approximately one-half was derived from the atmosphere. The rates of N2 fixation determined at different growth stages increased as the plants developed, and reached a maximum during the reproductive stage both under field and greenhouse conditions. Differences in translocation of N were observed between the cultivars tested, particularly under field conditions. Thus, the fixed N harvest index was 93 and 60 for cultivars Flor de Mayo and Bayocel, respectively. In early stages of growth, the total content of ureides in the plants correlated with the N fixation rates. The findings reported in the present paper can be used to build a strategy for enhancing biological N2 fixation in common bean. 相似文献
14.
The production of phytohormone-like substances byAzospirillum brasilense andArthrobacter giacomelloi were investigated in single and mixed batch cultures under diazotrophic conditions. The mixed culture showed higher productivity of gibberellins and cytokinins. 相似文献
15.
16.
Vance, C. P., Reibach, P. H. and Pankhurst, C. E. 1987. Symbiotic properties of Lotus pedunculatus root nodules induced by Rhizobium loti and Bradyrhizobium sp. ( Lotus ).
Symbiotic properties of root nodules were evaluated in glasshouse-grown Lotus pedunculatus Cav. cv. Maku inoculated with either a fast-growing Rhizobium loti strain NZP2037 or a slow-growing Bradyrhizobium sp. ( Lotus ) strain CC814s. Although the nodule mass of plants inoculated with NZP2037 was twice that of plants inoculated with CC814s, the yield of NZP2037 shoots and roots was 50% that of CC814s shoots and roots. Nodules induced by Bradyrhizobium fixed substantially more N than nodules induced by R. loti. Glucose requirements [mol glucose (mol N2 fixed)-1 ] of nodules induced by CC814s and NZP2037 were 7.1 and 16.6, respectively. Nodule enzymes of carbon and nitrogen assimilation reflected the disparity of the two sym-bioses. Xylem sap of the symbiosis with the higher yield contained a higher concentration of asparagine [9.86 μmol (ml xylem sap)'] than did the lower yielding symbiosis [5.80 umol (ml xylem sap)']. Nodule CO2 fixation was directly linked to nodule N assimilation in both symbioses. The results indicate that the difference between the two symbioses extend to nodule N and C assimilation and whole plant N transport. The data support a role for host plant modulation of bacterial efficiency and assimilation of fixed N. 相似文献
Symbiotic properties of root nodules were evaluated in glasshouse-grown Lotus pedunculatus Cav. cv. Maku inoculated with either a fast-growing Rhizobium loti strain NZP2037 or a slow-growing Bradyrhizobium sp. ( Lotus ) strain CC814s. Although the nodule mass of plants inoculated with NZP2037 was twice that of plants inoculated with CC814s, the yield of NZP2037 shoots and roots was 50% that of CC814s shoots and roots. Nodules induced by Bradyrhizobium fixed substantially more N than nodules induced by R. loti. Glucose requirements [mol glucose (mol N
17.
AIMS: The effect of some abiotic factors, dryness, heat and salinity on the growth and biological activity of Gluconacetobacter diazotrophicus, and the influence of a salt stress on some enzymes involved in carbon metabolism of these bacteria is studied under laboratory conditions. METHODS AND RESULTS: Strain PAL-5 of G. diazotrophicus was incubated under different conditions of drying, heat and salinity. Cells showed tolerance to heat treatments and salt concentrations, and sensitivity to drying conditions. Higher NaCl dosage of 150 and 200 mmol l -1 limited its growth and drastically affected the nitrogenase activity and the enzymes glucose dehydrogenase, alcohol dehydrogenase, fumarase, isocitrate dehydrogenase and malate dehydrogenase. CONCLUSIONS: Gluconacetobacter diazotrophicus, despite its endophytic nature, tolerated heat treatments and salinity stress, but its nitrogenase activity and carbon metabolism enzymes were affected by high NaCl dosage. SIGNIFICANCE AND IMPACT OF THE STUDY: The investigation of the biological activity of G. diazotrophicus in response to different abiotic factors led to more knowledge of this endophyte and may help to clarify pathways involved in its transmission into the host plant. 相似文献
18.
19.
Plants have developed a variety of molecular strategies to use limiting nutrients with a maximum efficiency. N assimilated into biomolecules can be released in the form of ammonium by plant metabolic activities in various physiological processes such as photorespiration, the biosynthesis of phenylpropanoids or the mobilization of stored reserves. Thus, efficient reassimilation mechanisms are required to reincorporate liberated ammonium into metabolism and maintain N plant economy. Although the biochemistry and molecular biology of ammonium recycling in annual herbaceous plants has been previously reported, the recent advances in woody plants need to be reviewed. Moreover, it is important to point out that N recycling is quantitatively massive during some of these metabolic processes in trees, including seed germination, the onset of dormancy and resumption of active growth or the biosynthesis of lignin that takes place during wood formation. Therefore, woody plants constitute an excellent system as a model to study N mobilization and recycling. The aim of this paper is to provide an overview of different physiological processes in woody perennials that challenge the overall plant N economy by releasing important amounts of inorganic N in the form of ammonium. 相似文献
20.
Nitrogen-fixing bacteria colonize the roots of many gramineous plants from different geographic regions. The discovery that diazotrophs can be isolated from surface-sterilized roots or other plant material led to studies of their potential to inhabit plant tissue. For some diazotrophs, their endophytic character has been documented. This review summarizes current methods to identify endophytes and to characterize the colonization of plants by endophytic bacteria. Taxonomy, occurrence, diversity, and mechanisms of plant infection of Azoarcus spp. is discussed in relation to Herbaspirillum spp. and Acetobacter diazotrophicus. Perspectives how to study their functions and metabolism in association with plants are discussed. 相似文献