首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
森林干扰度评价   总被引:2,自引:0,他引:2  
干扰普遍存在于森林生态系统,是森林群落演替的驱动力之一。干扰对森林生态系统的影响程度,决定于干扰的频率、强度、空间范围等,过度频繁或不合理的干扰,可能导致森林生态系统的毁灭。森林对干扰的响应表现在多方面,其内在联系十分复杂,因此,很难用森林中某个现象或某几个现象反映森林生态系统对干扰的响应。为了准确、科学地评价现有森林生态系统对干扰的响应程度,本文提出应用森林干扰度(REFD)评价现有森林受干扰的程度。森林干扰度是由于干扰的存在造成森林生态系统结构与功能的改变程度,仅反映干扰后现有森林与目标森林(地带性顶极植被或原有森林等)的距离程度(差距),不反映干扰的种类、强度、性质等因素;在对森林干扰度内涵进行详细分析的基础上,确定了评价森林干扰度的原则及不同尺度条件下森林干扰度的评价指标。  相似文献   

2.
树轮分析用于森林干扰强度推测的实例研究   总被引:4,自引:1,他引:4  
树木年轮生长释放一直广泛应用于重建森林干扰,但没有直接的研究证明利用树木年轮分析建立的干扰强度的可靠程度,本文试图通过一个取自青海省互助国家森林公园(1987年经历过择伐)的样方进行验证.在40m×50m的青扦林样方内取胸径≥5cm的树木(124株)树轮芯样并测定胸径、树高和择伐后山杨(PopulusdavilianaDode)树桩(55个)的基径以及树木与树桩的距离.分析结果表明1987和1988年树木生长释放百分率为38.7%,与该林分的准确干扰强度37.7%(树桩基部断面积与该断面积加树木胸高断面积之和的比值)相接近.1980~1989年10a间树木生长释放百分率为62.9%,该10a间的平均干扰强度为37.0%(生长释放百分率62.9%/生长释放平均次数1.7),也接近于该林分的准确干扰强度,因而用树轮资料重建森林干扰强度是可行和可靠的.  相似文献   

3.
自然干扰与森林林冠空隙动态   总被引:25,自引:1,他引:24  
班勇 《生态学杂志》1996,15(3):43-49
  相似文献   

4.
缪宁  刘世荣  史作民  马姜明  王晖 《生态学报》2013,33(13):3889-3897
保留木是指森林生态系统受到强度干扰后所存留的树木,保留木对退化森林生态系统结构与功能的维持和恢复具有多方面的生态效应。在生态系统的尺度上总结了退化森林生态系统中保留木的各种生态效应,主要包括保留木对非生物因子和生物因子(附生生物多样性、动物活动和动物多样性、树木更新、空间结构)的影响。森林生态系统经营中,"绿树保留"的经营方式是基于保留木生态效益的实践应用,它可有效减少采伐对生态系统结构和功能所造成的损失。并将有助于深入理解受到强度干扰后森林生态系统中保留木的多种生态效应,可为退化森林生态系统的恢复与重建提供理论依据。  相似文献   

5.
森林的风/雪灾害研究综述   总被引:38,自引:1,他引:38  
风/雪灾害不仪极大影响木材生产,同时对森林生态系统的稳定性也造成很大影响。森林风/雪危害的主要类型有树干弯曲、干(冠)折、掘根以及后续危害等;其发生主要依赖于气象条件、立地因子、树木和林分特征及其之间的相互作用。其中.林木尖削度(胸径/树高)和林分结构特征(树种、组成、密度等)是控制树木和林分对风/雪荷载抵抗的主要特征量。因此.通过造林、调整林分结构.加强林分管理如间伐、施肥等措施一直是用来减少林木的风/雪灾害的主要措施。另外.林木或林分发生风/雪害的模型分析研究也取得了很大进展,但由于森林风/雪害受诸如地形、天气等多种因素影响、目前所建立的模型系统在实际应用中普适性较芹。通过综述以往研究结果认为:在气象和立地条件难以控制的情况下.通过改变可控因子林分结构来减少森林风/雪害是可行的。因此.研究如何加强森林经营管理,尤其是不同形式的间伐技术和不同处理的造林措施与风/雪灾害发生的关系、如何增加林木和林分抵抗风/雪灾害的能力等是今后该研究领域的重点和难点。与此同时.应加强风/雪灾害危险率评估研究.进而对森林进行风/雪灾害危险率管理;并注重对受灾前后林地内生态效应的研究,以便为灾后的森林经营管理和调控提供坚实的理论依据。  相似文献   

6.
人为干扰与喀斯特森林群落退化及评价研究   总被引:51,自引:5,他引:51  
导致贵州喀斯特森林发生退化的原因是火烧、开垦、放牧和樵采。选用群落高度、显著度、萌生株比例、生物量和耐荫树种比例5个指标对群落退化进行定量评价。结果表明,退化群落可分为A-F6个退化等级。在受自然力作用和人为干扰不明显时,顶极群落发生正常的波动(A)。在干扰力的作用大于波动的振幅时,顶极群落发生明显退化(B-F),群落退化度逐渐增大。群落退化等级与退化群落自然恢复的演替阶段基本一致,生物量的移出和耐荫树种消退是退化的关键因素,火烧、放牧、开垦干扰群落主要分布于退化等级C-F中,樵采干扰群落多发生于B-C中。4种干扰对退化群落萌生株数影响较大,受火烧、樵采开扰群落多,而受开垦、放牧干扰群落较少。各干扰群落退化度从小至大排序为樵采干扰群落、开垦干扰群落、放牧干扰群落、火烧干扰群落。  相似文献   

7.
南方双季稻低温灾害等级预测   总被引:2,自引:0,他引:2  
基于南方双季稻种植区708个气象站1961—2010年的逐日气象资料、双季稻低温灾害发生的气象行业标准和1960—2010年逐月74项大气环流特征量资料,采用因子膨化、相关性分析、逐步回归等方法,建立了针对不同风险和时空变化趋势的分区双季稻低温灾害历年第一次灾害发生等级预测模型。结果表明:高风险区(Ⅰ区)早稻春季低温灾害、晚粳稻寒露风、晚籼稻寒露风的预测模型平均外延预测基本一致准确率分别为100%、83.3%和83.3%;低风险且呈增加趋势区(Ⅱ区)早稻春季低温灾害、晚粳稻寒露风、晚籼稻寒露风的预测模型平均外延预测基本一致准确率分别为100%、83.3%和83.3%;低风险且呈减少趋势区(Ⅲ区)早稻春季低温灾害、晚粳稻寒露风、晚籼稻寒露风的预测模型平均外延预测基本一致准确率分别为83.3%、100%和83.3%;各预测区域各代表站预测模型的回代和预测等级误差基本在1个等级以内,具有较高的精度。  相似文献   

8.
 该文比较系统地综述了美国东部杜克森林76年来植物种类变化、种群动态和森林演替研究的基本情况。重点介绍了该森林内永久性森林样地的 设置和调查规范,以及最近10年来利用永久样地数据进行树木空间格局和自然干扰研究的最新进展,并将杜克森林永久样地监测规范和数据管 理方法与目前主要的森林监测网络进行了一定的比较,旨在对目前国际上蓬勃开展的长期定位植物多样性监测和空间格局研究有所启示和帮助 。  相似文献   

9.
为了解大兴安岭森林流域水文过程对森林干扰的响应,利用近配对流域方法,排除了气候变量的时空差异,对比研究了森林干扰后大兴安岭北部典型森林小流域(100 km2)洪峰径流(High flow)和枯水径流(Low flow)径流情势(Flow regimes)的变化趋势。结果表明,森林干扰对枯水径流情势影响显著,与对照流域(小北沟流域)相比,森林干扰(占流域总面积的6.74%)使老沟河流域平均枯水径流流量降低了26.58%,平均枯水径流变异系数值增加了36.77%,并且差异达到极显著水平(P0.01)。另一方面,森林植被的干扰相对增加了森林小流域的洪峰流量、历时和变异性,但与对照流域相比差异均未达到统计显著水平,说明小面积的森林植被干扰未能引起流域洪峰径流情势的显著变化。进一步对配对流域的径流浮动系数(Flashiness Index)的分析发现,森林干扰显著增加了森林小流域的径流浮动性,研究时段内干扰流域的径流浮动系数为0.078,是对照流域(0.057)的1.37倍。大兴安岭北部森林小流域的天然径流情势(Natural flow regimes)对森林干扰比较敏感,在与水文循环联系紧密的区域(例如河岸带),小范围的森林干扰便可以引起径流情势的显著变化,这在未来该地区森林和水资源的管理中需要特别注意。  相似文献   

10.
基于有害干扰的森林生态系统健康评价指标体系的构建   总被引:1,自引:0,他引:1  
袁菲  张星耀  梁军 《生态学报》2012,32(3):964-973
在分析国内外提出的众多森林生态系统健康评价指标的不足后,对评价指标进行研究和筛选。最终在森林生态系统健康评价指标体系的构建上提出了一个新的思路,即从森林火灾、林业有害生物、大气污染、人为有害干扰以及森林生态系统内部的增益干扰5个方面选取20个指标构建森林生态系统健康评价指标体系。其中森林火灾干扰包括平均降水量、平均气温、郁闭度、海拔、坡度、坡向、易燃树种的比例和林道距离8个指标,林业有害生物包括有害生物等级、危害程度和寄主树的比例3个指标,大气污染干扰通过叶片、土壤和污染物的分析测定,人为有害干扰包括森林经营措施、采伐措施和林下植被管理3个方面,而森林生态系统内部的增益干扰由物种多样性、群落结构和近自然度3个指标构成。同时对关键评价指标的意义进行了具体分析。此指标体系摒弃传统的评价观念,结合了近年来影响全国森林健康的几个重要原因,更能准确的反应目前森林生态系统的健康状况。研究思路和方法的提出在一定程度上可以丰富森林生态系统健康评价研究理论与方法体系。  相似文献   

11.
Frost events during the active growth period of plants can cause extensive frost damage with tremendous economic losses and dramatic ecological consequences. A common assumption is that climate warming may bring along a reduction in the frequency and severity of frost damage to vegetation. On the other hand, it has been argued that rising temperature in late winter and early spring might trigger the so called “false spring”, that is, early onset of growth that is followed by cold spells, resulting in increased frost damage. By combining daily gridded climate data and 1,489 k in situ phenological observations of 27 tree species from 5,565 phenological observation sites in Europe, we show here that temporal changes in the risk of spring frost damage with recent warming vary largely depending on the species and geographical locations. Species whose phenology was especially sensitive to climate warming tended to have increased risk of frost damage. Geographically, compared with continental areas, maritime and coastal areas in Europe were more exposed to increasing occurrence of frost and these late spring frosts were getting more severe in the maritime and coastal areas. Our results suggest that even though temperatures will be elevated in the future, some phenologically responsive species and many populations of a given species will paradoxically experience more frost damage in the future warming climate. More attention should be paid to the increased frost damage in responsive species and populations in maritime areas when developing strategies to mitigate the potential negative impacts of climate change on ecosystems in the near future.  相似文献   

12.
A recent Ecology Letters paper of Fisher et al. (2008) utilized a modelling framework to investigate disturbance effects on forest biomass dynamics. But it contains serious methodological and conceptual errors. Associated conclusions are unlikely to be correct.  相似文献   

13.
提升森林质量、修复生态功能是东北阔叶红松林生态修复的核心,而阐明林木与林分生长对采伐干扰的响应机理是其中的关键。森林对采伐干扰的响应会受到空间尺度、时间尺度以及干扰程度等因素的综合影响。以往的研究侧重于比较不同采伐处理下林木生长的相对大小,而忽视了不同恢复时间下,林木和林分生长随干扰程度的变化。以吉林蛟河阔叶红松林采伐样地为对象,基于连续四次样地调查数据(2011、2013、2015、2018年),分别探讨了林木和林分生长在不同恢复阶段对不同程度采伐干扰的响应,并通过构建分段模型确定采伐干扰阈值。结果显示:林木和林分生长对采伐干扰的响应并不一致,采伐促进了林木生长,并且林木生长量随采伐强度的升高而升高;采伐降低了林分生产力,林分生产力随采伐强度的升高而降低。林木和林分生长对采伐干扰的响应存在时滞效应:林木和林分生长在采伐后两年内并无显著变化,而在采伐三年后才发生明显变化。此外,分段模型的结果显示:当保留木断面积为21.6 m2/hm2时,林分生产力最高,表明通过密度调整使阔叶红松林胸高断面积维持在21.6 m2/hm2附近,可使林分处于较高的生产力水平、促进森林恢复。研究结果能够为制定科学的阔叶红松林生态修复策略提供技术支撑。  相似文献   

14.
Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (–)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at ?4–?6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.  相似文献   

15.
Sustainable use of tropical forest systems requires continuous monitoring of biological diversity and ecosystem functions. This can be efficiently done with early warning (short-cycle) indicator groups of non-economical insects, whose population levels and resources are readily measured. Twenty-one groups of insects are evaluated as focal indicator taxa for rapid assessment of changes in Neotropical forest systems. Composite environmental indices for heterogeneity, richness, and natural disturbance are correlated positively with butterfly diversity in 56 Neotropical sites studied over many years. Various components of alpha, beta and gamma-diversity show typical responses to increased disturbance and different land-use regimes. Diversity often increases with disturbance near or below natural levels, but some sensitive species and genes are eliminated at very low levels of interference. Agricultural and silvicultural mosaics with over 30% conversion, including selective logging of three or more large trees per hectare, show shifts in species composition with irreversible loss of many components of the butterfly community, indicating non-sustainable land and resource use and reduction of future options. Monitoring of several insect indicator groups by local residents in a species-rich Brazilian Amazon extractive reserve has helped suggest guidelines for cologically, economically, and socially sustainable zoning and use regimes.  相似文献   

16.
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.  相似文献   

17.
Factors related to diversity of decomposer fungi in tropical forests   总被引:8,自引:0,他引:8  
Recent studies suggest that host-preferences are common among certain groups of tropical fungal decomposers but rare in others, and sometimes occur where we least expect them. Host preferences among microfungi and ascomycetes that decompose leaf litter are common but usually involve differences in relative frequencies more than presence/absence, so their diversity may be loosely correlated with species richness of host trees. Strong host-specificity appears to be rare among wood decomposer fungi, whereas characteristics of their substrata and habitat are very important for this group. Anthropogenic disturbance predisposed a tropical forest to subsequent hurricane damage, and the resulting direct and indirect effects on host diversity and habitat heterogeneity were reflected in the decomposer fungal community more than sixty years after the original disturbance. While species richness of dictyostelid slime molds and functional diversity of their bacterial prey increased with disturbance, the more diverse microfungi and ascomycetes were apparently negatively affected by disturbance.  相似文献   

18.
T. Hiura 《Oecologia》1995,104(3):265-271
To evaluate whether the intermediate-disturbance hypothesis applies on regional scales, the relationship between the species diversity and gap formation regime of beech forests was examined. The mean gap size and the variation of gap sizes showed no correlation with species diversity. The mean windstorm interval varied widely, but geographical trends, such as latitudinal gradient, were not observed. However, locations that sustained an intermediate frequency of disturbance had the highest species diversity. Although a latitudinal gradient of disturbance was not apparent, the intermediate-disturbance hypothesis was partly supported on a geographic scale. The most predictable model for species diversity was a multiple regression model composed of two factors, the windstorm interval and the cumulative temperature of the growing season. The fact that the temperature was of greater importance than the disturbance interval indicates that the most important factor in predicting forest species diversity is the amount of available energy on a geographic scale.  相似文献   

19.
Aim The impact of microscale frost disturbance on vegetation colonization and successionary trends was examined within patterned ground features of Little Ice Age chronosequences. The goal was to investigate and compare vegetation response to micro‐site frost disturbance with that of previous studies done at a coarser landscape scale. Location The study sites occur on Little Ice Age glacier forelands within Jotunheimen, Norway (61°–62° N). The forelands of the glaciers Slettmarkbreen, Styggedalsbreen and Vestre Memurubreen have been well studied providing chronological controls for landscape studies. Sorted patterned ground features are found within the chronosequences, typically declining with frost intensity and disturbance with increasing terrain age. Methods Micro‐plots (8.3 × 8.3 cm) were placed at the inner borders and centres of patterned ground features. Species were identified and per cent species cover and per cent cover of life‐form category were noted. Nonparametric Kruskal–Wallis and Mann–Whitney U‐tests were used to test for differences between percent cover of life‐form categories within patterned ground features as well as to identify thresholds of successional change across the chronosequences. Results Significant relationships between life‐from groups and patterned ground positions of varying ages were deduced using nonparametric statistics. Findings were then used to discuss trends of succession within patterned ground features and across the chronosequences. Vegetation establishment occurs at the border positions of young (< 30 years) patterned ground features. With time and distance from the ice margin, vegetation encroaches inwards toward the disturbed centres. Succession within patterned ground exhibits several stages: (1) bryophytes/crusts and lichens, (2) grasses/sedges and (3) woody shrubs. The occurrence of forbs was sporadic and generally non‐significant. Main conclusions Frost disturbance in patterned ground appears to delay successional trends of vegetation communities when compared with previous studies on ‘stable’ terrain, producing micro‐site lag effects. These small patches of disturbed ground are therefore important regarding vegetation assemblages across the landscape and are unlikely to be detected at the landscape scale.  相似文献   

20.
The aim of this investigation was to assess ice nucleation and frost resistance of two varieties of grapevine (Siegrebbe and Madeleine Angevine) during bud burst under radiative freezing conditions analogous to those during Spring in the UK. During bud burst, grapevines were almost entirely resistant to freezing during frosts of less than -3°C by virtue of their ability to supercool. The risk of frost damage increased significantly as bud development progressed, and once buds had passed growth stage DS3 they became more sensitive to freezing and freezing damage was more extensive. The two varieties did not differ in frost resistance but, because of its earlier developing habit, variety Siegrebbe could be more prone to frost damage in the field. Buds were more prone to damage after freezing once bud burst had commenced and the damage could not be reversed by acclimating plants for periods of 7 to 21 days at 4°C in an 8 h photoperiod. Such acclimation appeared to predispose frozen buds to more extensive damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号