首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18°C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury—leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14CO2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury. These results suggest one of two possible explanations: either the mutation directly affects sterol metabolism, which in turn leads to chilling sensitivity, or the mutation affects another unidentified function and the accumulation of radioactivity in steryl-esters is a secondary consequence of chilling injury.  相似文献   

2.
《Insect Biochemistry》1987,17(2):367-372
The inactive esterase A4 (Ease A4) purified from the diapausing eggs of the silkworm, Bombyx mori, was chilled in vitro. The enzyme activity was very low during the early chilling period and it was suddenly elevated at a certain time of the chilling (2 weeks or less after chilling), depending upon when the chilling period began, and was followed by a rapid fall. The sudden elevation of the Ease A4 activity in vitro is equivalent to that observed in vivo and is coincident with the chilling period, the latter being indispensable for diapause termination.Data are also presented that suggest that the cold-induced activation of the Ease A4 may result from an autonomous structural change of the enzyme molecule which proceeds gradually in the cold.  相似文献   

3.
Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.  相似文献   

4.
The objective of this study was to investigate whether abscisic acid (ABA), a second messenger in chilling stress responses, is involved in brassinosteroids (BRs)-induced chilling tolerance in suspension cultured cells from Chorispora bungeana. The suspension cells were treated with 24-epibrassinolide (EBR), ABA, ABA biosynthesis inhibitor fluridone (Flu) and EBR in combination with Flu. Their effects on chilling tolerance, reactive oxygen species (ROS) levels and antioxidant defense system were analyzed. The results showed that EBR treatment markedly alleviated the decrease of cell viability and the increases of ion leakage and lipid peroxidation induced by chilling stress, suggesting that application of EBR could improve the chilling tolerance of C. bungeana suspension cultures. In addition, similar results were observed when exogenous ABA was applied. Treatment with Flu alone and in combination with EBR significantly suppressed cell viability and increased ion leakage and lipid peroxidation under low temperature conditions, indicating that the inhibition of ABA biosynthesis could decrease the chilling tolerance of C. bungeana suspension cultures and the EBR-enhanced chilling tolerance. Further analyses showed that EBR and ABA enhanced antioxidant defense and slowed down the accumulation of ROS caused by chilling. However, Flu application differentially blocked these protective effects of EBR. Moreover, EBR was able to mimic the effect of ABA by markedly increasing ABA content in the suspension cells under chilling conditions, whereas the EBR-induced ABA accumulation was inhibited by the addition of Flu. Taken together, these results demonstrate that EBR may confer chilling tolerance to C. bungeana suspension cultured cells by enhancing the antioxidant defense system, which is partially mediated by ABA, resulting in preventing the overproduction of ROS to alleviate oxidative injury induced by chilling.  相似文献   

5.
6.
The effects of exposure to low temperature on photosynthesis and protein phosphorylation in chilling-sensitive and cold-tolerant plant species were compared. Chilling temperatures resulted in light-dependent loss of photosynthetic electron transport in chilling-sensitive rice (Oryza sativa L.) but not in cold-tolerant barley (Hordeum vulgare L.). Brief exposure to chilling temperatures (0-15°C, 10 min) did not cause a significant difference in photosynthetic O2 evolution capacity in vivo between rice and barley. Analysis of in vivo chlorophyll fluorescence in chilling-sensitive rice suggests that low temperatures cause an increased reduction of the plastoquinone pool that could result in photoinhibitory damage to the photosystem II reaction centers. Analysis of 32P incorporation into thylakoid proteins both in vivo and in vitro demonstrated that chilling temperature inhibited protein phosphorylation in rice, but not in barley. Low temperature (77 K) fluorescence analysis of isolated thylakoid membranes indicated that state I to state II transitions occurred in barley, but not in rice subjected to chilling temperatures. These observations suggest that protein phosphorylation may play an important role in protection against photoinhibition caused by exposure to chilling temperatures.  相似文献   

7.
Jatropha curcas, one of the most important energy plant resources, is vulnerable to chilling. To evaluate the effects of chilling on photosynthesis of J. curcas and intraspecific differences in chilling tolerance, seedlings of twelve populations were treated with the temperature of 4–6°C for five consecutive nights with normal environmental temperature during the day. Night chilling treatment decreased light-saturated photosynthetic rate (P max) significantly for all populations. Stomatal limitation could not explain the decreased P max because intracellular CO2 concentration was not significantly reduced by night chilling in all populations (with only one exception). The decreased soluble-protein content, which may be related to the increased malondialdehyde (MDA) content, contributed to the decreased P max. The increased MDA content indicated that oxidative stress occurred after night chilling, which was associated with the larger decrease in P max compared with the decrease in actual photochemical efficiency of photosystem II, and the slight increase in thermal dissipation of excessive energy. After five-day recovery, MDA (with two exceptions) and P max still did not recover to the levels as those before night chilling treatment for all populations, indicating that J. curcas was vulnerable to chilling. Chilling tolerance was significantly different among populations. Populations originating from high elevations had greater chilling-tolerant abilities than populations originating from low elevations, showing a local adaptation to environmental temperatures of origins. Our study shed light on the possibility to find or breed chilling-tolerant genotypes of J. curcas.  相似文献   

8.
The cabbage butterfly, Pieris melete hibernates and aestivates as a diapausing pupa. We present evidence that the optimum of low temperature and optimal chilling periods for both summer and winter diapause development are based on a similar mechanism. Summer or winter diapausing pupae were exposed to different low temperatures of 1, 5, 10 or 15°C for different chilling periods (ranging from 30 to 120 d) or chilling treatments started at different stages of diapause, and were then transferred to 20°C, LD12.5∶11.5 to terminate diapause. Chilling temperature and duration had a significant effect on the development of aestivating and hibernating pupae. The durations of diapause for both aestivating and hibernating pupae were significantly shorter when they were exposed to low temperatures of 1, 5 or 10°C for 50 or 60 days, suggesting that the optimum chilling temperatures for diapause development were between 1 and 10°C and the required optimal chilling period was about 50–60 days. Eighty days of chilling was efficient for the completion of both summer and winter diapause. When chilling periods were ≥90 days, the durations of summer and winter diapause were significantly lengthened; however, the adult emergence was more synchronous. The adaptive significance of a similar mechanism on summer and winter diapause development is discussed.  相似文献   

9.
Cucumber (Cucumis sativus L.) seedlings are more sensitive to chilling stress when transferred to low temperature from the night cycle than from the day cycle. However, greater damage occurs when chilling is carried out in light than in dark. Freshly isolated protoplasts are extremely sensitive to damage when chilled at 4°C in light, but suffer significantly less injury when chilled in dark. If freshly isolated protoplasts are pre-chill conditioned at 27°C in either light or dark for a few hours prior to exposure to various chilling stresses, subsequent chilling damage is markedly reduced. Damage to chilled protoplasts also is reduced if cultures are placed in dark instead of light immediately following removal from low temperature. Experiments utilizing the cell wall synthesis inhibitor, dichlorobenzonitrile, showed that cell wall regeneration during the pre-chill conditioning period at 27°C does not appear to be associated with the enhanced chilling tolerance observed in these cultures. The results obtained in this investigation suggest that the physiological properties of cucumber cotyledon protoplasts accurately reflect those of intact seedlings, and hence provide a good system for studies into the mechanism of chilling damage in plants.  相似文献   

10.
11.
Maize (Zea mays L.) is a chilling (below 15 °C) sensitive plant that shows little capacity to acclimate to low growth temperatures. Maize leaves are extremely sensitive to chilling injury, which usually results in premature leaf senescence. Leaves exposed to temperatures below 10 °C in the light show substantial inhibition of CO2 assimilation and down-regulation of photosynthetic electron transport. However, the intrinsic relationships between the quantum efficiencies of photosystems I and II are not modified by chilling. Moreover, the integral relationships between non-cyclic electron transport and CO2 fixation are similar in chilled and unchilled leaves. In this review we examine the roles and importance of photosynthetic regulation, carbon metabolism and antioxidant metabolism in determining the sensitivity of maize leaf photosynthesis to chilling. The distinct cellular localisation patterns of antioxidant enzymes such as glutathione reductase (EC 1.6.4.2) and dehydroascorbate reductase (EC 1.8.5.1) can restrict the recycling of antioxidants associated with photosynthesis during chilling. Disruption of circadian regulation of metabolism and insufficient antioxidant defence are postulated to cause chilling sensitivity.  相似文献   

12.
Rates of solute leakage from excised discs of cucumber (Cucumis sativus L. cv Straight Eight) cotyledons were altered by temperature during plasmolysis in the manner of a simple diffusion phenomenon; the log of the leakage rate increased in proportion to the temperature. During deplasmolysis, however, leakage rates responded to temperature with a very different pattern: chilling conditions (below about 20°C) caused large increases in leakage rates, indicating disruption of membrane integrity in the tissues. The time course of restoration of normal leakage rates after deplasmolysis/chilling damage indicated a rapid repair of the lesions. A similar sensitivity to low temperatures was found during rehydration after leaf desiccation, with low temperatures again causing high leakage rates. It is suggested that low temperatures interfere with membrane expansion, possibly by lowering elasticity and hindering the incorporation of lipid material into the expanding membrane. The expansion of tissues at low temperatures may cause lesions in cellular membranes, contributing to chilling injury.  相似文献   

13.
14.
In the present study, we used suspension cultured cells from Chorispora bungeana Fisch. and C.A. Mey to investigate whether nitric oxide (NO) is involved in the signaling pathway of chilling adaptive responses. Low temperatures at 4 °C or 0 °C induced ion leakage, lipid peroxidation and cell viability suppression, which were dramatically alleviated by exogenous application of NO donor sodium nitroprusside (SNP). The levels of reactive oxygen species (ROS) were obviously reduced, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) and the contents of ascorbic acid (AsA) and reduced glutathione (GSH) increased evidently in the presence of SNP under chilling stress. In addition, under low temperature conditions, treatment with NO scavenger PTIO or mammalian NO synthase (NOS) inhibitor l-NAME remarkably aggravated oxidative damage in the suspension cultures compared with that of chilling treatment alone. Moreover, measurements of NOS activity and NO production showed that both NOS activity and endogenous NO content increased markedly under chilling stress. The accumulation of NO was inhibited by l-NAME in chilling-treated cultures, indicating that most NO production under chilling may be generated from NOS-like activity. Collectively, these results suggest that chilling-induced NO accumulation can effectively protect against oxidative injury and that NOS like activity-dependent NO production might act as an antioxidant directly scavengering ROS or operate as a signal activating antioxidant defense under chilling stress, thus conferring an increased tolerance to chilling in C. bungeana suspension cultures.  相似文献   

15.
A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype ‘Goliath’, was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis ‘Goliath’ when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis ‘Goliath’. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures.  相似文献   

16.
The loss of organic substances from cotton (Gossypium hirsutum L.) radicles is enhanced by chilling, low pH, or anaerobic conditions. Solute loss returns to a low level when the stimulus is removed, indicating no permanent injury to membranes. Loss of solute induced by chilling or anaerobiosis is reversed or prevented by calcium or magnesium. These cations did not reduce the solute loss resulting from low pH. The site of loss appears to be localized at or near the root tip. If the seedling cotyledons are removed, the loss is greatly reduced, indicating the need for a reserve pool of organic substances.  相似文献   

17.
《Journal of Asia》2000,3(1):49-53
We report indirect chilling injury, which is caused by the long-term exposure to the low temperature above freezing point, found in the beet armyworm, Spodoptera exigua. Short (minute or hour) exposure to 5°C was not lethal to all stages of S. exigua. However, several day-exposure to 5°C gave significant nonfreezing injuries such as low egg hatchability, retarded larval development, and low pupation rates. Even though the larvae did not develop at 5°C, they used up their major nutrient reserves significantly. The mechanism of the indirect chilling injury of the beet armyworm was discussed on the basis of the oxidative stress hypothesis.  相似文献   

18.
《Journal of plant physiology》2014,171(3-4):243-249
Environmental temperature change may induce modifications in membrane lipid properties and composition, which account for different physiological responses among plant species. Coffee plants, as many tropical species, are particularly sensitive to cold, but genotypes can present differences that can be exploited to improve crop management and breeding. This work intended to highlight the changes promoted by low non-freezing temperatures (chilling) in phospholipid (PL) composition of chloroplast membranes of genotypes from two Coffea species, Coffea arabica cv. Catuaí (moderately tolerant) and Coffea canephora cv. Conilon (Clone 153, more susceptible), and relate them with cold sensitivity differences. Such evaluation was performed considering a gradual temperature decrease, chilling (4 °C) exposure and a recovery period under rewarming conditions. Catuaí presented an earlier acclimation response than Clone 153 (CL 153). It displayed a higher metabolic activity during acclimation (total fatty acids and total PL increases) and chilling (phosphatidylglycerol increases), and an overall better recovery. Catuaí also showed the highest phosphatidylglycerol unsaturation (higher double bond index) after chilling, in contrast with CL 153 (gradual unsaturation decrease). Higher unsaturation degree in Catuaí than in CL 153 was also observed for phosphatidylcholine and phosphatidylinositol, resulting, mainly, from raises in unsaturated C18:2 and C18:3. It is suggested that an enhanced PL synthesis and turnover induced by a gradual cold exposure, as well as unsaturation increases in major PL classes, is related to decreased Catuaí susceptibility to low temperatures and strongly contributes to sustain photosynthetic activity in this genotype under chilling conditions, as reported in previous work by this team.  相似文献   

19.
Changes in protein synthesis induced in tomato by chilling   总被引:11,自引:4,他引:7       下载免费PDF全文
Cooper P  Ort DR 《Plant physiology》1988,88(2):454-461
Impaired chloroplast function is responsible for nearly two-thirds of the inhibition of net photosynthesis caused by dark chilling in tomato (Lycopersicon esculentum Mill.). Yet the plant can eventually recover full photosynthetic capacity if it is rewarmed in darkness at high relative humidity. As a means of identifying potential sites of chilling injury in tomato, we monitored leaf protein synthesis in chilled plants during this rewarming recovery phase, since changes in the synthesis of certain proteins might be indicative of damaged processes in need of repair. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins pulse labeled with [35S]methionine revealed discrete changes in the pattern of protein synthesis as a result of chilling. A protein of Mr = 27 kilodaltons (kD), abundantly synthesized by unchilled plants, declined to undetectable levels in chilled plants. Reillumination restored the synthesis of this protein in plants rewarmed for 8 hours. Peptide mapping analysis showed the 27 kD protein to be the major chlorophyll a/b binding protein of the photosystem II light-harvesting complex (LHCP-II). The identity of this protein was confirmed by its immunoprecipitation from leaf extracts by a monoclonal antibody specific for the major LHCP-II species. While chilling abolished the synthesis of the major LHCP-II species, it also induced the synthesis of an entirely new protein of Mr = 35 kD. The protein was synthesized on cytoplasmic ribosomes, and two-dimensional polyacrylamide gel electrophroesis showed it to exist as a single isoelectric species. This chilling-induced 35 kD protein is structurally distinct from the 27 kD LHCP-II and appears to be synthesized specifically in response to low temperature. While the 35 kD protein was found not to be associated with the chloroplast thylakoid membrane, chilling did cause selective changes in thylakoid membrane protein synthesis. The synthesis of two unidentified proteins, Mr = 14 and 41 kD, and the β-subunit of the chloroplast coupling factor were substantially reduced after chilling. These losses may provide clues as to the causes of the overall reduction in net photosynthesis caused by chilling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号