共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities 总被引:1,自引:0,他引:1 下载免费PDF全文
Álvaro López‐García Sara Varela‐Cervero Martti Vasar Maarja Öpik José M. Barea Concepción Azcón‐Aguilar 《Molecular ecology》2017,26(24):6948-6959
Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource‐conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. 相似文献
2.
采用Illumina MiSeq高通量测序技术,研究江西鄱阳湖周边平原岗地的泡桐纯林及桐-药复合经营模式(泡桐-玉竹、泡桐-麦冬和泡桐-射干)下泡桐丛枝菌根真菌(arbuscular mycorrhizae fungi, AMF)群落结构特征。研究发现,泡桐AMF群落主要由球囊霉科、巨孢囊霉科、无梗囊霉科和多孢囊霉科组成,其中球囊霉科真菌占绝对优势,但不同科的相对丰度在不同经营模式下仍存在差异。与泡桐纯林相比,桐-药复合经营模式会降低泡桐菌根侵染率及AMF群落多样性。只有泡桐-射干经营模式中的泡桐含有多孢囊霉科真菌,且相对多度占2.73%。研究结果表明桐-药复合经营模式下中药材种类的差异会不同程度地改变泡桐AMF的群落结构。这为进一步研究桐-药复合经营模式下泡桐AMF的生态功能和资源利用提供了科学依据。 相似文献
3.
4.
Although arbuscular mycorrhizal fungi (AMF) form spatially complex communities in terrestrial ecosystems, the scales at which this diversity manifests itself is poorly understood. This information is critical to the understanding of the role of AMF in plant community composition. We examined small-scale (submetre) variability of AMF community composition (terminal restriction fragment length polymorphism fingerprinting) and abundance (extraradical hyphal lengths) in two 1 m(2) plots situated in a native grassland ecosystem of western Montana. Extraradical AMF hyphal lengths varied greatly between samples (14-89 m g soil(-1)) and exhibited spatial structure at scales <30 cm. The composition of AMF communities was also found to exhibit significant spatial autocorrelation, with correlogram analyses suggesting patchiness at scales <50 cm. Supportive of overall AMF community composition analyses, individual AMF ribotypes corresponding to specific phylogenetic groups exhibited distinct spatial autocorrelation. Our results demonstrate that AMF diversity and abundance can be spatially structured at scales of <1 m. Such small-scale heterogeneity in the soil suggests that establishing seedlings may be exposed to very different, location dependent AMF communities. Our results also have direct implications for representative sampling of AMF communities in the field. 相似文献
5.
【背景】丛枝菌根(arbuscular mycorrhiza, AM)真菌能够和大多数植物形成互利共生体系,以促进植物生长、提高抗逆能力,在生产中具有重要作用,但AM真菌的繁殖技术限制了其应用。【目的】构建AM真菌的高效繁殖体系。【方法】于温室盆栽条件下,将根内根孢囊霉(Rhizophagus intraradice)接种于由3种寄主植物高粱(Sorghum bicolor)、玉米(Zea mays)、红三叶草(Trifolium repens)与5种培养基质(沸石、河砂、草炭、珍珠岩和蛭石)构建的4种繁殖体系中进行培养。研究不同繁殖体系对根内根孢囊霉侵染程度、产孢量的影响;然后利用高粱接种扩繁的菌剂进行AM真菌侵染能力的测定以验证其扩繁效果;最后基于筛选出的最优扩繁条件探讨对其他种类AM真菌摩西斗管囊霉(Funneliformis mosseae)、幼套近明球囊霉(Clariodeoglous etunicatum)、地表多样孢囊霉(Diversispora versiformis)和脆无梗囊霉(Acaulospora delicate)的扩繁效果。【结果】基质为河砂+蛭石+草炭(体... 相似文献
6.
Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores
Bacteria associated with arbuscular mycorrhizal (AM) fungal spores may play functional roles in interactions between AM fungi, plant hosts and defence against plant pathogens. To study AM fungal spore-associated bacteria (AMB) with regard to diversity, source effects (AM fungal species, plant host) and antagonistic properties, we isolated AMB from surface-decontaminated spores of Glomus intraradices and Glomus mosseae extracted from field rhizospheres of Festuca ovina and Leucanthemum vulgare. Analysis of 385 AMB was carried out by fatty acid methyl ester (FAME) profile analysis, and some also identified using 16S rRNA gene sequence analysis. The AMB were tested for capacity to inhibit growth in vitro of Rhizoctonia solani and production of fluorescent siderophores. Half of the AMB isolates could be identified to species (similarity index 0.6) within 16 genera and 36 species. AMB were most abundant in the genera Arthrobacter and Pseudomonas and in a cluster of unidentified isolates related to Stenotrophomonas. The AMB composition was affected by AM fungal species and to some extent by plant species. The occurrence of antagonistic isolates depended on AM fungal species, but not plant host, and originated from G. intraradices spores. AM fungal spores appear to host certain sets of AMB, of which some can contribute to resistance by AM fungi against plant pathogens. 相似文献
7.
8.
Correlation analysis between arbuscular mycorrhizal fungal community and host plant phylogeny 下载免费PDF全文
为弄清丛枝菌根(arbuscular mycorrhiza, AM)真菌群落随宿主植物演化的变异规律,通过对MaarjAM数据库进行数据挖掘, 根据每个分子虚拟种(virtual taxa, VT)包含的DNA序列不少于5条的标准, 筛选出188种菌根植物。通过分析植物与其根内AM真菌的关系发现: AM真菌的物种丰富度随着寄主植物的分化而增加; 在不同的植物系统类群中, AM真菌的物种丰富度显著不同; 在起源时间较晚的被子植物和裸子植物中, AM真菌的物种丰富度显著高于起源较早的苔类、角苔类和蕨类植物类群, 而与寄生植物共生的AM真菌物种丰富度与早期植物无显著差异; 不同寄主植物进化类群间AM真菌组成差异显著。以上结果表明: AM真菌群落随着寄主植物进化而发生变化。在进化过程中, 寄主植物倾向于选择保留共生效率较高的AM真菌。 相似文献
9.
Despite the importance of arbuscular mycorrhizal fungi (AMF) within deciduous forest ecosystems, we know little about how natural AMF communities are structured in the root zone of the endangered elm species Ulmus chenmoui. In this study, three U. chenmoui sampling sites, differing with respect to plant health, age, and growth status, were selected in Anhui Province, China. AMF biodiversity in the root zones of individual U. chenmoui trees was investigated using high‐throughput sequencing. In total, 61 AMF operational taxonomic units were detected. Five genera, namely Glomus (62.82%), Paraglomus (17.82%), Rhizophagus (4.29%), Septoglomus (4.06%) and Funneliformis (2.35%), and 29 species of AMF were identified. Correlation analysis indicated that available soil phosphorus and potassium concentrations were the main edaphic factors influencing AMF community structure. There was a difference in AMF species richness among the three U. chenmoui stands. Our study showed that soil nutrient concentrations and plant health, age, and growth status can exert a selective effect on the composition of the AMF population in the soil in the root zones of U. chenmoui trees. 相似文献
10.
为弄清丛枝菌根(arbuscular mycorrhiza, AM)真菌群落随宿主植物演化的变异规律,通过对MaarjAM数据库进行数据挖掘, 根据每个分子虚拟种(virtual taxa, VT)包含的DNA序列不少于5条的标准, 筛选出188种菌根植物。通过分析植物与其根内AM真菌的关系发现: AM真菌的物种丰富度随着寄主植物的分化而增加; 在不同的植物系统类群中, AM真菌的物种丰富度显著不同; 在起源时间较晚的被子植物和裸子植物中, AM真菌的物种丰富度显著高于起源较早的苔类、角苔类和蕨类植物类群, 而与寄生植物共生的AM真菌物种丰富度与早期植物无显著差异; 不同寄主植物进化类群间AM真菌组成差异显著。以上结果表明: AM真菌群落随着寄主植物进化而发生变化。在进化过程中, 寄主植物倾向于选择保留共生效率较高的AM真菌。 相似文献
11.
作者采集了北京、青岛、济南、南京、武汉和贵阳6个城市中部分大学校园高羊茅Festuca elata、城内公园大叶黄杨Euonymus japonicus及郊区公园连翘Forsythia suspensa根区土样,测定菌根着生状况和丛枝菌根(arbuscular mycorrhizal,AM)AM真菌孢子密度,形态鉴定AM真菌种类,测定AM真菌种丰度、多样性指数及群落结构等。除从北京中国人民大学校园草坪和南京下马坊公园的大叶黄杨根系上未见丛枝结构外,其他根系样品均观测到典型的丛枝和泡囊结构,丛枝着生率较低,且多为A-型。各城市大多数样品的菌根总侵染率、丛枝着生率和泡囊数分别低于40%、5%和1/mm。北京中国人民大学草坪根系菌根总侵染率显著低于其他城市校区的。除北京香山的连翘和济南山东大学的高羊茅上的种丰度、Shannon指数、以及北京紫竹院公园大叶黄杨上的孢子密度之外,青岛市的3种植物上AM真菌的孢子密度、种丰度和Shannon指数均高于其他城市的。各校园草坪中相同的AM真菌种类较少,但放射球囊霉Glomus radiatum分布频率100%,为校园草坪中的优势种。城市公园以青岛中山公园的AM真菌的孢子密度和种丰度最高;郊区公园以贵阳黔灵山的孢子密度、种丰度和Shannon指数最高,武汉狮子山的种丰度和Shannon指数最低。土壤氮沉降与泡囊数量呈显著负相关,土壤压实程度与泡囊数量呈显著正相关。大叶黄杨根区土壤中AM真菌种丰度与土壤有机质含量呈显著正相关,Shannon指数与土壤pH呈显著正相关。结论认为,中国不同城市生态系统中AM真菌群落结构差异较大,氮沉降和土壤压实程度对根内泡囊数量具有不同的影响。 相似文献
12.
Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. 相似文献
13.
14.
Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities 下载免费PDF全文
David García de León John Davison Mari Moora Maarja Öpik Huyuan Feng Inga Hiiesalu Teele Jairus Kadri Koorem Yongjun Liu Cherdchai Phosri Siim‐Kaarel Sepp Martti Vasar Martin Zobel 《Global Change Biology》2018,24(6):2649-2659
The arbuscular mycorrhizal (AM) symbiosis is a key plant–microbe interaction in sustainable functioning ecosystems. Increasing anthropogenic disturbance poses a threat to AM fungal communities worldwide, but there is little empirical evidence about its potential negative consequences. In this global study, we sequenced AM fungal DNA in soil samples collected from pairs of natural (undisturbed) and anthropogenic (disturbed) plots in two ecosystem types (10 naturally wooded and six naturally unwooded ecosystems). We found that ecosystem type had stronger directional effects than anthropogenic disturbance on AM fungal alpha and beta diversity. However, disturbance increased alpha and beta diversity at sites where natural diversity was low and decreased diversity at sites where natural diversity was high. Cultured AM fungal taxa were more prevalent in anthropogenic than natural plots, probably due to their efficient colonization strategies and ability to recover from disturbance. We conclude that anthropogenic disturbance does not have a consistent directional effect on AM fungal diversity; rather, disturbance equalizes levels of diversity at large scales and causes changes in community functional structure. 相似文献
15.
丛枝菌根真菌和植物寄生线虫 总被引:3,自引:0,他引:3
本文综述了土壤微生物中丛枝菌根真菌和植物寄生线虫的互作关系及其互作机理,并阐述了丛枝菌根真菌在防治植物线虫病害方面的应用前景和实际操作中应注意的技术环节。 相似文献
16.
丛枝菌根(AM)真菌是陆地生态系统中重要的土壤微生物之一.其在土壤生态系统中延伸出的根外菌丝,可以通过菌丝融合的方式形成丛枝菌根网络(AMN).AMN在土壤生态系统中发挥着重要功能:一方面,AMN可以改变土壤的理化性质,其根外菌丝分泌物可以影响土壤微生物生存的微环境,进而改变土壤微生物的群落组成;另一方面,AM真菌的根外菌丝可以吸收土壤养分,并通过AMN将吸收的营养物质在宿主植物间进行分配,调节植物物种之间的竞争关系.为了全面阐述AMN在生态系统中的功能,本文围绕最新的AMN研究成果,探究AM真菌根外菌丝在土壤中相互融合的机制、AMN影响土壤微生物的数量和组成、调节植物群落的生态学机理,以及AMN调节地下资源、植物种内和种间竞争、影响植物群落的多样性和丰富度等生态系统功能.阐述在全球变化过程中AMN与大气氮沉降、CO2浓度升高以及温度升高的相关性,探究其在维持生态系统稳定性中的作用,并对本领域未来的发展方向和应用前景进行展望. 相似文献
17.
Xiaocui Ma Xia Xu Qinghong Geng Yiqi Luo Chenghui Ju Qian Li Yan Zhou 《Global Ecology and Biogeography》2023,32(8):1423-1434
Aim
Arbuscular mycorrhizal fungi (AMF) are widely distributed soil organisms that play critical roles in ecosystem functions. However, little is known about their global distribution and the underlying mechanisms. Here, we aimed to explore distribution pattern and key predictors of AMF diversity and abundance at the global scale.Location
Global.Time Period
1987–2022.Major Taxa Studied
Arbuscular mycorrhizal fungi.Methods
We investigated the distribution pattern and key predictors of AMF diversity and abundance at the global scale by compiling 654 field studies.Results
We found that cold climate zones had relatively low AMF diversity. At the ecosystem level, grassland tended to have higher AMF diversity and abundance. Soil available phosphorus (P) and latitude were the most important predictors of AMF diversity. AMF richness and Shannon index decreased with increasing soil available P and latitude. Soil available P and soil pH were the main predictors for global distribution of AMF abundance. AMF colonization rate and spore abundance declined with soil available P and increased with soil pH. Mean annual precipitation was also an important, positive correlate of spore abundance.Main Conclusions
Our findings highlight soil available P as an important predictor affecting the distribution of AMF diversity and abundance, advancing our understanding of the mechanisms underlying the distribution patterns of mycorrhizal fungal diversity and abundance at the global scale. 相似文献18.
19.
Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes 下载免费PDF全文
Tanya E. Cheeke Ursel M. Schütte Chris M. Hemmerich Mitchell B. Cruzan Todd N. Rosenstiel James D. Bever 《Molecular ecology》2015,24(10):2580-2593
Maize, genetically modified with the insect toxin genes of Bacillus thuringiensis (Bt), is widely cultivated, yet its impacts on soil organisms are poorly understood. Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and may be uniquely sensitive to genetic changes within a plant host. In this field study, the effects of nine different lines of Bt maize and their corresponding non‐Bt parental isolines were evaluated on AMF colonization and community diversity in plant roots. Plants were harvested 60 days after sowing, and data were collected on plant growth and per cent AMF colonization of roots. AMF community composition in roots was assessed using 454 pyrosequencing of the 28S rRNA genes, and spatial variation in mycorrhizal communities within replicated experimental field plots was examined. Growth responses, per cent AMF colonization of roots and AMF community diversity in roots did not differ between Bt and non‐Bt maize, but root and shoot biomass and per cent colonization by arbuscules varied by maize cultivar. Plot identity had the most significant effect on plant growth, AMF colonization and AMF community composition in roots, indicating spatial heterogeneity in the field. Mycorrhizal fungal communities in maize roots were autocorrelated within approximately 1 m, but at greater distances, AMF community composition of roots differed between plants. Our findings indicate that spatial variation and heterogeneity in the field has a greater effect on the structure of AMF communities than host plant cultivar or modification by Bt toxin genes. 相似文献
20.
Mycorrhizal fungi are present in all arable soils and colonize nearly all crops and weed pests of crops. They may be involved as mutualists or pathogens of crops in well known but poorly understood phenomena such as crop rotation and green manure effects on soil productivity. Crop change effects on mycorrhizal fungal community parameters were evaluated in three field experiments. In Experiment 1, soybean (Glycine max (L.) Merr. cv. Douglas) was grown continuously or rotated with corn (Zea mays L.), milo (Sorghum bicolor (L.) Moench), or fescue (Festuca arundinacea Schreb cv. Johnstone) for two years, then soybean was grown on all plots. Continuous soybean plots were dominated byGigaspora spp., while rotated crops were dominated byGlomus spp. Differences in communities and community indices of continuous soybean and rotated plots were reduced after growing soybeans on rotated plots. In Experiment 2, a fescue sod was plowed and pearl millet (Pennisetum americanum Leeke) or crabgrass (Digitaria sanguinalis (L.) Scop.) grown. Both hosts resulted in great changes in populations of individual species, decreases in community dominance, and increases in community diversity and equitability. Crabgrass also resulted in reduced species richness. In Experiment 3, tobacco (Nicotiana tabacum L.) or fescue was planted on adjacent tracts of land with a long-term history of either fescue (30 yr) or sorghum-sudangrass (Sorghum bicolor (L.) Moench. ×S. sudanense (Piper) Staph.) (3 yr). The long-term cropping history had major effects on the mycorrhizal fungal communities which were related to the expression of mycorrhizal stunt disease of tobacco. Changes occurred in these communities in response to either current-season crop. These experiments suggest that crop rotation causes large changes in mycorrhizal fungal communities, that these changes may be involved in the rotation effect on soil productivity, and that design of cropping systems should take mycorrhizal fungal communities into consideration. 相似文献