首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Posttranslational geranylgeranylation of Rab GTPases is catalyzed by Rab geranylgeranyltransferase (RabGGTase), which consists of a catalytic alpha/beta heterodimer and an accessory Rab escort protein (REP). The crystal structure of isoprenoid-bound RabGGTase complexed to REP-1 has been solved to 2.7 A resolution. The complex interface buries a surprisingly small surface area of ca. 680 A and is unexpectedly formed by helices 8, 10, and 12 of the RabGGTase alpha subunit and helices D and E of REP-1. We demonstrate that the affinity of RabGGTase for REP-1 is allosterically regulated by phosphoisoprenoid via a long-range trans-domain signal transduction event. Comparing the structure of REP-1 with the closely related RabGDI, we conclude that the specificity of the REP:RabGGTase interaction is defined by differently positioned phenylalanine residues conserved in the REP and GDI subfamilies.  相似文献   

2.
More than 100 proteins necessary for eukaryotic cell growth, differentiation, and morphology require posttranslational modification by the covalent attachment of an isoprenoid lipid (prenylation). Prenylated proteins include members of the Ras, Rab, and Rho families, lamins, CENPE and CENPF, and the gamma subunit of many small heterotrimeric G proteins. This modification is catalyzed by the protein prenyltransferases: protein farnesyltransferase (FTase), protein geranylgeranyltransferase type I (GGTase-I), and GGTase-II (or RabGGTase). In this review, we examine the structural biology of FTase and GGTase-I (the CaaX prenyltransferases) to establish a framework for understanding the molecular basis of substrate specificity and mechanism. These enzymes have been identified in a number of species, including mammals, fungi, plants, and protists. Prenyltransferase structures include complexes that represent the major steps along the reaction path, as well as a number of complexes with clinically relevant inhibitors. Such complexes may assist in the design of inhibitors that could lead to treatments for cancer, viral infection, and a number of deadly parasitic diseases.  相似文献   

3.
Protein geranylgeranyltransferase type-I (GGTase-I), one of two CaaX prenyltransferases, is an essential enzyme in eukaryotes. GGTase-I catalyzes C-terminal lipidation of >100 proteins, including many GTP- binding regulatory proteins. We present the first structural information for mammalian GGTase-I, including a series of substrate and product complexes that delineate the path of the chemical reaction. These structures reveal that all protein prenyltransferases share a common reaction mechanism and identify specific residues that play a dominant role in determining prenyl group specificity. This hypothesis was confirmed by converting farnesyltransferase (15-C prenyl substrate) into GGTase-I (20-C prenyl substrate) with a single point mutation. GGTase-I discriminates against farnesyl diphosphate (FPP) at the product turnover step through the inability of a 15-C FPP to displace the 20-C prenyl-peptide product. Understanding these key features of specificity is expected to contribute to optimization of anti-cancer and anti-parasite drugs.  相似文献   

4.
Rab geranylgeranyltransferase (RabGGTase or GGTase-II) catalyzes the post-translational prenylation of Rab proteins. Rab proteins are recognized as substrates only when they are complexed to Rab Escort Protein (REP). The classical model of prenylation complex assembly assumes initial formation of the Rab.REP binary complex, which subsequently binds to RabGGTase loaded with the isoprenoid donor geranylgeranyl pyrophosphate (GGpp). We demonstrate here that REP-1 can also associate with RabGGTase in the absence of Rab protein and that this interaction is dramatically strengthened by the presence of phosphoisoprenoids such as GGpp. The GGpp-dependent interaction between RabGGTase and REP-1 was observed using affinity precipitations and gel filtration and was quantitated on the basis of fluorescence assays. In the presence of GGpp, REP-1 binds to RabGGTase with a K(d) value of approximately 10 nm, while in its absence the affinity between the two proteins is in the micromolar range. We further demonstrate that binding of Rab7 to the RabGGTase.GGpp.REP-1 complex occurs without prior dissociation of REP-1. Analysis of binding and prenylation rate constants indicate that the RabGGTase.GGpp.REP-1 complex can function as a kinetically competent intermediate of the prenylation reaction. We conclude that, depending on the prevailing concentrations, binding of REP-1 to RabGGTase in the presence of GGpp may serve as an alternative pathway for the assembly of the prenylation machinery in vivo. Implications of these findings for the role of REP-1 in the prenylation reaction are discussed.  相似文献   

5.
Posttranslational prenylation of proteins is a widespread phenomenon and the majority of prenylated proteins are geranylgeranylated members of the Rab GTPase family. Geranylgeranylation is catalyzed by Rab geranylgeranyltransferase (RabGGTase) and is critical for the ability of Rab protein to mediate vesicular docking and fusion of various intracellular vesicles. RabGGTase consists of a catalytic alpha/beta heterodimer and an accessory protein termed Rab escort protein (REP-1) that delivers the newly prenylated Rab proteins to their target membrane. Mutations in the REP-1 gene in humans lead to an X-chromosome-linked defect known as choroideremia--a debilitating disease that inevitably culminates in complete blindness. Here we report in vitro assembly and purification of the stoichiometric ternary complex of RabGGTase with REP-1 stabilized by a hydrolysis-resistant phosphoisoprenoid analog--farnesyl phosphonyl(methyl)phoshonate. The complex formed crystals of extended plate morphology under low ionic-strength conditions. X-ray diffraction data were collected to 2.8 A resolution at the ESRF. The crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 68.7, b = 197.7, c = 86.1 A, beta = 113.4 degrees. Preliminary structural analysis revealed the presence of one molecule in the asymmetric unit.  相似文献   

6.
Protein prenylation is one of the most common post-translational modifications affecting hundreds of eukaryotic proteins. Rab geranylgeranyl transferase prenylates exclusively the GTPases of Rab family, and inhibition of this enzyme induces apoptosis in cancer cells, making it an attractive anticancer target. To efficiently test for possible inhibitors of this enzyme, a robust high-throughput assay is required. Here, we present protocols for the synthesis of a fluorescent analogue of geranylgeranyl pyrophosphate NBD-FPP. We utilized this fluorescent probe to design a high-throughput fluorometric assay of Rab prenylation. This continuous fluorometric assay offers the advantage of being sensitive, cost-effective and amendable to miniaturization. The protocol includes the synthesis of the fluorescent substrate, setup of the assay, assay procedure and data analysis. The procedure for the Rab geranylgeranyl transferase (RabGGTase) plate assay depends on the number of compounds in the screen but generally can be performed within a day.  相似文献   

7.
Inhibiting protein prenylation is an attractive means to modulate cellular processes controlled by a variety of signaling proteins, including oncogenic proteins such as Ras and Rho GTPases. The largest class of prenylated proteins contain a so-called CaaX motif at their carboxyl termini and are subject to a maturation process initiated by the attachment of an isoprenoid lipid by either protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I). Inhibitors of FTase, termed FTIs, have been the subject of intensive development in the past decade and have shown efficacy in clinical trials. Although GGTase-I inhibitors (GGTIs) have received less attention, accumulating evidence suggests GGTIs may augment therapies using FTIs and could be useful to treat a myriad of additional disease states. Here we describe the characterization of a selective, highly potent, and cell-active GGTase-I inhibitor, GGTI-DU40. Kinetic analysis revealed that inhibition by GGTI-DU40 is competitive with the protein substrate and uncompetitive with the isoprenoid substrate; the Ki for the inhibition is 0.8 nM. GGTI-DU40 is highly selective for GGTase-I both in vitro and in living cells. Studies indicate GGTI-DU40 blocks prenylation of a number of geranylgeranylated CaaX proteins. Treatment of MDA-MB-231 breast cancer cells with GGTI-DU40 inhibited thrombin-induced cell rounding via a process that involves inhibition of Rho proteins without significantly effecting parallel mobilization of calcium via Gbetagamma. These studies establish GGTI-DU40 as a prime tool for interrogating biologies associated with protein geranylgeranylation and define a novel structure for this emerging class of experimental therapeutics.  相似文献   

8.
Chan LN  Fiji HD  Watanabe M  Kwon O  Tamanoi F 《PloS one》2011,6(10):e26135
Small molecule inhibitors of protein geranylgeranyltransferase-I (GGTase-I) provide a promising type of anticancer drugs. Here, we first report the identification of a novel tetrahydropyridine scaffold compound, P61-E7, and define effects of this compound on pancreatic cancer cells. P61-E7 was identified from a library of allenoate-derived compounds made through phosphine-catalyzed annulation reactions. P61-E7 inhibits protein geranylgeranylation and blocks membrane association of geranylgeranylated proteins. P61-E7 is effective at inhibiting both cell proliferation and cell cycle progression, and it induces high p21(CIP1/WAF1) level in human cancer cells. P61-E7 also increases p27(Kip1) protein level and inhibits phosphorylation of p27(Kip1) on Thr187. We also report that P61-E7 treatment of Panc-1 cells causes cell rounding, disrupts actin cytoskeleton organization, abolishes focal adhesion assembly and inhibits anchorage independent growth. Because the cellular effects observed pointed to the involvement of RhoA, a geranylgeranylated small GTPase protein shown to influence a number of cellular processes including actin stress fiber organization, cell adhesion and cell proliferation, we have evaluated the significance of the inhibition of RhoA geranylgeranylation on the cellular effects of inhibitors of GGTase-I (GGTIs). Stable expression of farnesylated RhoA mutant (RhoA-F) results in partial resistance to the anti-proliferative effect of P61-E7 and prevents induction of p21(CIP1/WAF1) and p27(Kip1) by P61-E7 in Panc-1 cells. Moreover, stable expression of RhoA-F rescues Panc-1 cells from cell rounding and inhibition of focal adhesion formation caused by P61-E7. Taken together, these findings suggest that P61-E7 is a promising GGTI compound and that RhoA is an important target of P61-E7 in Panc-1 pancreatic cancer cells.  相似文献   

9.
Rab geranylgeranyltransferase (RabGGTase) catalyzes the prenylation of Rab proteins. Despite possessing a single active site, RabGGTase is able to add geranylgeranyl moieties onto each of the two C-terminal cysteine residues of Rab. We have studied the kinetics of Rab double prenylation employing a combination of a novel high pressure liquid chromatography (HPLC)-based in vitro prenylation assay and fluorescence spectroscopy. Transfer of the first geranylgeranyl group proceeds with a k(1) = 0.16 s(-1), while the conversion from singly to double prenylated Rab is 4-fold slower (k(2) = 0.039 s(-1)). We found that following the first transfer reaction, the conjugated lipid is removed from the active site of RabGGTase but mono-prenylated Rab.REP complex remains bound to RabGGTase with a K(d) < 1 nm. In contrast to the doubly prenylated Rab7.REP dissociation of the mono-prenylated species from RabGGTase was only weakly stimulated by phosphoisoprenoid. Based on the obtained rate constants we calculated that at least 72% of mono-prenylated Rab molecules proceed to double prenylation without dissociating from RabGGTase. The obtained data provides an explanation of how RabGGTase discriminates between mono-prenylated intermediate and double prenylated reaction product. It also indicates that the phosphoisoprenoid acts both as a substrate and as a sensor governing the kinetics of protein.protein interactions in the double prenylation reaction.  相似文献   

10.
To determine whether RhoA isoprenylation (geranylgeranylation) is required for agonist-induced actin cytoskeleton reorganization (measured by an increase in the filamentous F- to monomeric G-actin ratio), human airway smooth muscle cells were treated for 72 h with inhibitors of geranylgeranyltransferase I. Geranylgeranyltransferase inhibitor (GGTI)-2147 or -286 pretreatment completely blocked the increase in the F- to G-actin fluorescence ratio when cells were stimulated with lysophosphatidic acid (LPA), endothelin, or carbachol. In contrast, LPA or endothelin induced actin cytoskeletal reorganization in cells treated with farnesyltransferase inhibitor (FTI)-277 to inactivate Ras. Forskolin-induced adenylyl cyclase activity was inhibited by carbachol in GGTI-2147-pretreated cells, demonstrating that the effect of geranylgeranyltransferase I inhibition on stress fiber formation was not due to uncoupling of signaling between the heterotrimeric G(i) protein (the Ggamma subunit is isoprenylated) and distal effectors. These results demonstrate that selective GGTIs can inhibit agonist-induced actin reorganization.  相似文献   

11.
Posttranslational geranylgeranylation of Rab GTPases is catalyzed by Rab geranylgeranyltransferase (RabGGTase), which consists of a catalytic alpha/beta heterodimer and an accessory Rab escort protein (REP). REP functions as a molecular chaperone that presents Rab proteins to the RabGGTase and after prenylation delivers them to their target membrane. Mutations in the REP-1 gene in humans lead to an X-chromosome-linked defect known as choroideremia, a progressive disease that inevitably culminates in complete blindness. Here we report in vitro assembly, purification, and crystallization of the monoprenylated Rab7GDP:REP-1 complex. X-Ray diffraction data for the REP-1:Rab7 complex were collected to 2.2-A resolution at the ESRF. The crystals belong to the orthorhombic space group P2(1)2(1)2 with unit-cell parameters a=64.3A, b=105.3A, c=132.6A. Preliminary structural analysis revealed the presence of one complex in the asymmetric unit. To understand the conformational changes in Rab protein on complex formation we also crystallized the GDP-bound form of Rab7 that diffracted to at least 1.8A on the in-house X-ray source.  相似文献   

12.
Intracellular vesicular trafficking is regulated by Rab proteins, small GTPases that require posttranslational geranylgeranylation for biological activity. This covalent modification is catalyzed by Rab geranylgeranyl transferase (RabGGTase) and proceeds only in the presence of accessory Rab Escort Protein (REP). In this communication, we report the cloning and characterization of REP gene of Arabidopsis thaliana. Highest expression of REP mRNA was detected in leaves and flowers in contrast to stems and roots. AtREP is recognized by anti-rat REP1 serum. Interaction of AtREP with the protein substrate is presented, as well as a structural model obtained through homology modeling, based on the known structure of rat REP1.  相似文献   

13.
GTPases of the Rab family are key components of vesicular transport in eukaryotic cells. Posttranslational attachment of geranylgeranyl moieties is essential for Rab function. Geranylgeranyltransferase type II (GGTase-II) catalyzes the modification of Rab proteins once they are in complex with their escort protein (REP). Upon completion of prenylation, REP and modified Rab leave the enzyme, enabling a new round of catalysis. We have studied the mechanism underlying substrate binding and product release in the geranylgeranylation of Rab proteins. Binding of the Rab7:REP-1 complex to GGTase-II was found to be strongly modulated by geranylgeranyl pyrophosphate (GGpp). The affinity of GGTase-II for the Rab7:REP-1 complex increases from ca. 120 nM to ca. 2 nM in the presence of GGpp. To study the effect of GGpp on interaction of the enzyme with its product, we generated semisynthetic doubly prenylated Rab7 bearing a fluorescent reporter group. Using this novel compound, we demonstrated that the affinity of doubly prenylated Rab7:REP-1 complex for GGTase-II was 2 and 18 nM in the absence and presence of GGpp, respectively. The difference in affinities originates mainly from a difference in the dissociation rates. Thus, binding of the new isoprenoid substrate molecule facilitates the product release by GGTase-II. The affinity of GGpp for the prenylated Rab7:REP-1:GGTase-II was K(d) = 22 nM, with one molecule of GGpp binding per molecule of prenylated ternary complex. We interpreted this finding as an indication that the geranylgeranyl moieties transferred to Rab protein do not occupy the GGpp binding site of the GGTase-II. In summary, these results demonstrate that GGpp acts as an allosteric activator that stabilizes the Rab7:REP-1:GGTase-II complex and triggers product release upon prenylation, preventing product inhibition of the enzyme.  相似文献   

14.
Rab GTPases play a key role in the regulation of membrane traffic. Posttranslational geranylgeranylation is critical for their biological activity and is conferred by a Rab geranylgeranyl transferase (RabGGTase). To study the interactions between Rab proteins and RabGGTase, we used in vitro ligation methodology to generate a fluorescent semi-synthetic Rab7 protein. The obtained protein was functionally active and was used to demonstrate a micromolar affinity interaction of Rab7 with the RabGGTase in the absence of Rab escort protein (REP). This finding is consistent with an earlier proposed model according to which RabGGTase possesses two independent weak binding sites for REP and Rab proteins.  相似文献   

15.
Terry KL  Casey PJ  Beese LS 《Biochemistry》2006,45(32):9746-9755
Posttranslational modifications are essential for the proper function of a number of proteins in the cell. One such modification, the covalent attachment of a single isoprenoid lipid (prenylation), is carried out by the CaaX prenyltransferases, protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type-I (GGTase-I). Substrate proteins of these two enzymes are involved in a variety of cellular functions but are largely associated with signal transduction. These modified proteins include members of the Ras superfamily, heterotrimeric G-proteins, centromeric proteins, and a number of proteins involved in nuclear integrity. Although FTase and GGTase-I are highly homologous, they are quite selective for their substrates, particularly for their isoprenoid diphosphate substrates, FPP and GGPP, respectively. Here, we present both crystallographic and kinetic analyses of mutants designed to explore this isoprenoid specificity and demonstrate that this specificity is dependent upon two enzyme residues in the beta subunits of the enzymes, W102beta and Y365beta in FTase (T49beta and F324beta, respectively, in GGTase-I).  相似文献   

16.
Small molecule inhibitors against protein geranylgeranyltransferase-I such as P61A6 have been shown to inhibit proliferation of a variety of human cancer cells and exhibit antitumor activity in mouse models. Development of these inhibitors could be dramatically accelerated by conferring tumor targeting and controlled release capability. As a first step towards this goal, we have encapsulated P61A6 into a new type of liposomes that open and release cargos only under low pH condition. These low pH-release type liposomes were prepared by adjusting the ratio of two types of phospholipid derivatives. Loading of geranylgeranyltransferase-I inhibitor (GGTI) generated liposomes with average diameter of 50–100 nm. GGTI release in solution was sharply dependent on pH values, only showing release at pH lower than 6. Release of cargos in a pH-dependent manner inside the cell was demonstrated by the use of a proton pump inhibitor Bafilomycin A1 that Increased lysosomal pH and inhibited the release of a dye carried in the pH-liposome. Delivery of GGTI to human pancreatic cancer cells was demonstrated by the inhibition of protein geranylgeranylation inside the cell and this effect was blocked by Bafilomycin A1. In addition, GGTI delivered by pH-liposomes induced proliferation inhibition, G1 cell cycle arrest that is associated with the expression of cell cycle regulator p21CIP1/WAF1. Proliferation inhibition was also observed with various lung cancer cell lines. Availability of nanoformulated GGTI opens up the possibility to combine with other types of inhibitors. To demonstrate this point, we combined the liposomal-GGTI with farnesyltransferase inhibitor (FTI) to inhibit K-Ras signaling in pancreatic cancer cells. Our results show that the activated K-Ras signaling in these cells can be effectively inhibited and that synergistic effect of the two drugs is observed. Our results suggest a new direction in the use of GGTI for cancer therapy.  相似文献   

17.
Vesicular trafficking plays a key role in tuning the activity of Notch signaling. Here, we describe a novel and conserved Rab geranylgeranyltransferase (RabGGT)-α–like subunit that is required for Notch signaling-mediated lateral inhibition and cell fate determination of external sensory organs. This protein is encoded by tempura, and its loss affects the secretion of Scabrous and Delta, two proteins required for proper Notch signaling. We show that Tempura forms a heretofore uncharacterized RabGGT complex that geranylgeranylates Rab1 and Rab11. This geranylgeranylation is required for their proper subcellular localization. A partial dysfunction of Rab1 affects Scabrous and Delta in the secretory pathway. In addition, a partial loss Rab11 affects trafficking of Delta. In summary, Tempura functions as a new geranylgeranyltransferase that regulates the subcellular localization of Rab1 and Rab11, which in turn regulate trafficking of Scabrous and Delta, thereby affecting Notch signaling.  相似文献   

18.
Protein farnesyltransferase (FTase) inhibitors, generally called "FTIs," block the farnesylation of prelamin A, inhibiting the biogenesis of mature lamin A and leading to an accumulation of prelamin A within cells. A recent report found that a GGTI, an inhibitor of protein geranylgeranyltransferase-I (GGTase-I), caused an exaggerated accumulation of prelamin A in the presence of low amounts of an FTI. This finding was interpreted as indicating that prelamin A can be alternately prenylated by GGTase-I and that inhibiting both protein prenyltransferases leads to more prelamin A accumulation than blocking FTase alone. Here, we tested an alternative hypothesis-GGTIs are not specific for GGTase-I, and they lead to prelamin A accumulation by inhibiting ZMPSTE24 (a zinc metalloprotease that converts farnesyl-prelamin A to mature lamin A). In our studies, commonly used GGTIs caused prelamin A accumulation in human fibroblasts, but the prelamin A in GGTI-treated cells exhibited a more rapid electrophoretic mobility than prelamin A from FTI-treated cells. The latter finding suggested that the prelamin A in GGTI-treated cells might be farnesylated (which would be consistent with the notion that GGTIs inhibit ZMPSTE24). Indeed, metabolic labeling studies revealed that the prelamin A in GGTI-treated fibroblasts is farnesylated. Moreover, biochemical assays of ZMPSTE24 activity showed that ZMPSTE24 is potently inhibited by a GGTI. Our studies show that GGTIs inhibit ZMPSTE24, leading to an accumulation of farnesyl-prelamin A. Thus, caution is required when interpreting the effects of GGTIs on prelamin A processing.  相似文献   

19.
Reid TS  Long SB  Beese LS 《Biochemistry》2004,43(28):9000-9008
Many signal transduction proteins that control growth, differentiation, and transformation, including Ras GTPase family members, require the covalent attachment of a lipid group by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type-I (GGTase-I) for proper function and for the transforming activity of oncogenic mutants. FTase inhibitors are a new class of potential cancer therapeutics under evaluation in human clinical trials. Here, we present crystal structures of the clinical candidate L-778,123 complexed with mammalian FTase and complexed with the related GGTase-I enzyme. Although FTase and GGTase-I have very similar active sites, L-778,123 adopts different binding modes in the two enzymes; in FTase, L-778,123 is competitive with the protein substrate, whereas in GGTase-I, L-778,123 is competitive with the lipid substrate and inhibitor binding is synergized by tetrahedral anions. A comparison of these complexes reveals that small differences in protein structure can dramatically affect inhibitor binding and selectivity. These structures should facilitate the design of more specific inhibitors toward FTase or GGTase-I. Finally, the binding of a drug and anion together could be applicable for developing new classes of inhibitors.  相似文献   

20.
Protein geranylgeranyltransferase type I (GGTase I) is a heterodimeric zinc metalloenzyme catalyzing protein geranylgeranylation at cysteine residues present in C-terminal signature sequences referred to as CaaX (X=Leu) motifs. We have studied GGTase I as a potential antifungal target and recently reported its purification and cloning from the yeast Candida albicans (Ca GGTase I), an important human pathogen. Here, we report the high yield bacterial expression of Ca GGTase I by coexpression of maltose binding protein fusion proteins of both the alpha (Ram2p) and beta (Cdc43p) subunits. The cleaved and purified recombinant Ca GGTase I was demonstrated to be functional and structurally intact as judged by the presence of one equivalent of a tightly bound zinc atom and the near stoichiometric formation, isolation and catalytic turnover of a geranylgeranyl pyrophosphate-GGTase I complex. Kinetic analysis was performed with a native substrate protein, Candida Cdc42p, which exhibited significant pH dependent substrate inhibition, a feature not observed with other Ca GGTase I substrates. Prenyl acceptor substrate specificity was studied with a series of peptides in which both the CaaX motif, and the sequence preceding it, were varied. The prenyl acceptor K(M)s were found to vary nearly 100-fold, with biotinyl-TRERKKKKKCVIL, modeled after a presumably geranylgeranylated Candida protein, Crl1p (Rho4p), being the optimal substrate. A screen for inhibitors of Ca GGTase I identified compounds showing selectivity for the Candida versus human GGTase I. The most potent and selective compound, L-689230, had an IC(50) of 20 nM and >12,500-fold selectivity for Ca GGTase I. The lack of significant anti-Candida activity for any of these inhibitors is consistent with the recent finding that GGTase I is not required for C. albicans viability [R. Kelly et al., J. Bacteriol. 182 (2000) 704-713].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号