首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca indicator arsenazo III was introduced into cut frog twitch fibers by diffusion from end-pool segments rendered permeable by saponin. After 2-3 h, the arsenazo III concentration at the optical recording site in the center of a fiber reached two to three times that in the end-pool solutions. Thus, arsenazo III was bound to or taken up by intracellular constituents. The time course of indicator appearance was fitted by equations for diffusion plus linear reversible binding; on average, 0.73 of the indicator was bound and the free diffusion constant was 0.86 x 10(-6) cm2/s at 18 degrees C. When the indicator was removed from the end pools, it failed to diffuse away from the optical site as rapidly as it had diffused in. The wavelength dependence of resting arsenazo III absorbance was the same in cut fibers and injected intact fibers. After action potential stimulation, the active Ca and dichroic signals were similar in the two preparations, which indicates that arsenazo III undergoes the same changes in absorbance and orientation in both cut and intact fibers. Ca transients in freshly prepared cut fibers appeared to be similar to those in intact fibers. As a cut fiber experiment progressed, however, the Ca signal changed. With action potential stimulation, the half-width of the signal gradually increased, regardless of whether the indicator concentration was increasing or decreasing. This increase was usually not accompanied by any change in the amplitude of the Ca signal at a given indicator concentration or by any obvious deterioration in the electrical condition of the fiber. In voltage-clamp experiments near threshold, the relation between peak [Ca] and voltage usually became less steep with time and shifted to more negative potentials. All these changes were also observed in cut fibers containing antipyrylazo III (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:83-143). They are considered to represent a progressive change in the physiological state of a cut fiber during the time course of an experiment.  相似文献   

2.
Two new Ca indicators, purpurate-3,3'diacetic acid (PDAA) and 1,1'-dimethylpurpurate-3,3'diacetic acid (DMPDAA), were synthesized and used to measure Ca transients in frog cut muscle fibers. These indicators are analogues of the purpurate components of murexide and tetramethylmurexide, in which two acetate groups have been incorporated into each molecule to render it membrane impermeant. The apparent dissociation constant for Ca is 0.95 mM for PDAA and 0.78 mM for DMPDAA. One of the indicators was introduced into a cut fiber, which was mounted in a double Vaseline-gap chamber, by diffusion from the end-pool solutions. The time course of indicator concentration, monitored optically in the middle of the fiber in the central-pool region, suggests that 19% of the PDAA or 27% of the DMPDAA became bound or sequestered inside the fiber. In resting fibers, the absorbance spectrum of either indicator was well fitted by the indicator's [Ca] = 0 mM cuvette absorbance spectrum, which is consistent with the idea that PDAA and DMPDAA do not enter the sarcoplasmic reticulum as tetramethylmurexide appears to be able to do (Maylie, J., M. Irving, N.L. Sizto, G. Boyarsky, and W. K. Chandler, 1987. Journal of General Physiology. 89:145-176). After an action potential, the absorbance of either indicator underwent a rapid and transient change that returned to the prestimulus baseline within 100-200 ms. The amplitude of this change had a wavelength dependence that matched the indicator's Ca-difference spectrum. The average amplitude of peak free [Ca] was 21 microM (PDAA or DMPDAA) if all the indicator inside a fiber was able to react with Ca as in cuvette calibrations, and was 26 (PDAA) or 28 microM (DMPDAA) if only freely diffusible indicator could so react. These results suggest that PDAA and DMPDAA are the first Ca indicators that provide a reliable estimate of both the amplitude and time course of (the spatial average of) free [Ca] in a twitch muscle fiber after an action potential.  相似文献   

3.
The Ca indicator tetramethylmurexide was introduced into cut fibers, mounted in a double-Vaseline-gap chamber, by diffusion from the end-pool solutions. The indicator diffused rapidly to the central region of a fiber where optical recording was done and, if removed, diffused away equally fast. The time course of concentration suggests that, on average, a fraction 0.27 of indicator was reversibly bound to myoplasmic constituents and the free diffusion constant was 1.75 x 10(-6) cm2/s at 18 degrees C. The shape of the resting absorbance spectrum suggests that a fraction 0.11-0.15 of tetramethylmurexide inside a fiber was complexed with Ca. After action potential stimulation, there was a rapid transient change in indicator absorbance followed by a maintained change of opposite sign. The wavelength dependence of both changes matched a cuvette Ca-difference spectrum. The amplitude of the early peak varied linearly with indicator concentration and corresponded to an average rise in free [Ca] of 17 microM. These rather diverse findings can be explained if the sarcoplasmic reticulum membranes are permeable to Ca-free indicator. Both Ca-free and Ca-complexed indicator inside the sarcoplasmic reticulum would appear to be bound by diffusion analysis and the Ca-complexed form would be detected by the resting absorbance spectrum. The transient change in indicator absorbance would be produced by myoplasmic Ca reacting with indicator molecules that freely diffuse in myoplasmic solution. The maintained signal, which reports Ca dissociating from indicator complexed at rest, would come from changes within the sarcoplasmic reticulum. A method, based on these ideas, is described for separating the two components of the tetramethylmurexide signal. The estimated myoplasmic free [Ca] transient has an average peak value of 26 microM at 18 degrees C. Its time course is similar to, but possibly faster than, that recorded with antipyrylazo III (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:83-143).  相似文献   

4.
The Ca indicator antipyrylazo III was introduced into cut frog twitch fibers by diffusion (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:41-81). Like arsenazo III, antipyrylazo III was largely bound to or sequestered by intracellular constituents; on average, a fraction 0.68 was so immobilized. After action potential stimulation, there was an early change in absorbance, with a wavelength dependence that nearly matched a cuvette Ca-difference spectrum. As with arsenazo III, this signal became prolonged as experiments progressed. In a freshly prepared cut fiber containing 0.3 mM indicator, the absorbance change had an average half-width of 10 ms at 18 degrees C. The peak amplitude of this Ca signal depended on the indicator concentration in a roughly parabolic manner, which is consistent with a 1:2 stoichiometry for Ca:indicator complexation and, for indicator concentrations less than or equal to 0.4 mM, constant peak free [Ca]. If all the antipyrylazo III inside a fiber can react normally with Ca, peak free [Ca] is 3 microM at 18 degrees C. If only freely diffusible indicator can react, the estimate is 42 microM. The true amplitude probably lies somewhere in between. The time course of Ca binding to intracellular buffers and of Ca release from the sarcoplasmic reticulum is estimated from the 3- and 42-microM myoplasmic [Ca] transients. After action potential stimulation, the release waveform is rapid and brief; its latency after the surface action potential is 2-3 ms and its half-width is 2-4 ms. This requires rapid coupling between the action potential in the transverse tubular system and Ca release from the sarcoplasmic reticulum. The peak fractional occupancy calculated for Ca-regulatory sites on troponin is 0.46 for the 3-microM transient and 0.93 for the 42-microM transient. During a 100-ms tetanus at 100 Hz, the corresponding fractional occupancies are 0.56 and 0.94. The low value of occupancy associated with the low-amplitude [Ca] calibration seems inconsistent with a brief tetanus being able to produce near-maximal activation (Blinks, J. R., R. Rudel, and S. R. Taylor. 1978. Journal of Physiology. 277:291-323; Lopez J. R., L. A. Wanck, and S. R. Taylor. 1981. Science. 214:47-82).  相似文献   

5.
Intact single twitch fibers from frog muscle were studied on an optical bench apparatus after microinjection with tetramethylmurexide (TMX) or purpurate-3,3' diacetic acid (PDAA), two compounds from the purpurate family of absorbance Ca2+ indicators previously used in cut muscle fibers (Maylie, J., M. Irving, N. L. Sizto, G. Boyarsky, and W. K. Chandler. 1987. J. Gen. Physiol. 89:145-176; Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631.) The apparent longitudinal diffusion constant of PDAA (mol wt 380) in myoplasm was 0.99 (+/- 0.04, SEM) x 10(-6) cm2 s-1 (16-17 degrees C), a value which suggests that 24-43% of the PDAA molecules were bound to myoplasmic constituents of large molecular weight. The corresponding values for TMX (mol wt 322) were 0.98 (+/- 0.05) x 10(-6) cm2 s-1 and 44-50%, respectively. Muscle membranes (surface and/or transverse-tubular) appear to be permeable to TMX and, to a lesser extent, to PDAA, since the total amount of indicator contained within a fiber decreased with time after injection. The average time constants for disappearance of indicator were 46 (+/- 7, SEM) min for TMX and 338 (+/- 82) min for PDAA. The fraction of indicator in the Ca2(+)-bound state in resting fibers was significantly different from zero for TMX (0.070 +/- 0.008) but not for PDAA (0.026 +/- 0.009). In in vitro calibrations PDAA but not TMX appeared to react with Ca2+ with 1:1 stoichiometry. In agreement with Hirota et al. (Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631), we conclude that PDAA is probably a more reliable myoplasmic Ca2+ indicator than TMX. In fibers that contained PDAA and were stimulated by a single action potential, the calibrated peak value of the myoplasmic free [Ca2+] transient (delta[Ca2+]) averaged 9.4 (+/- 0.6) microM, a value about fivefold larger than that calibrated with antipyrylazo III under otherwise identical conditions (Baylor, S. M., and S. Hollingworth. 1988. J. Physiol. 403:151-192). The fivefold difference is similar to that previously reported in cut fibers with antipyrylazo III and PDAA. Since in both intact and cut fibers the percentage of PDAA bound to myoplasmic constituents is considerably smaller than that found for antipyrylazo III, the PDAA calibration of delta[Ca2+] is likely to be more accurate. Interestingly, in intact fibers the peak value of delta[Ca2+] calibrated with either PDAA or antipyrylazo III is about half that calibrated in cut fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Antipyrylazo III was introduced into frog cut twitch fibers (17-19 degrees C) by diffusion. After action potential stimulation, the change in indicator absorbance could be resolved into two components that had different time courses and wavelength dependences. The first component was early and transient and due to an increase in myoplasmic free [Ca] (Maylie, J., M. Irving, N.L. Sizto, and W.K. Chandler, 1987, Journal of General Physiology, 89:83-143). The second component, usually measured at 590 nm (near the isosbestic wavelength for Ca), developed later than the Ca transient and returned towards baseline about 100 times more slowly. Although the wavelength dependence of this component is consistent with an increase in either free [Mg] or pH, its time course is clearly different from that of the signals obtained with the pH indicators phenol red and 4',5'-dimethyl-5-(and -6-) carboxyfluorescein, suggesting that it is mainly due to an increase in free [Mg]. After a single action potential in freshly prepared cut fibers that contained 0.3 mM antipyrylazo III, the mean peak amplitude of delta A (590) would correspond to an increase in free [Mg] of 47 microM if all the signal were due to a change in [Mg] and all the intracellular indicator reacted with Mg as in cuvette calibrations. With either repetitive action potential stimulation or voltage-clamp depolarization, the delta A (590) signal continued to develop throughout the period when free [Ca] was elevated and then recovered to within 40-90% of the prestimulus baseline with an average rate constant between 0.5 and 1.0 s-1. With prolonged voltage-clamp depolarization, both the amplitude and rate of development of the delta A(590) signal increased with the amplitude of the depolarization and appeared to saturate at levels corresponding to an increase in free [Mg] of 0.8-1.4 mM and a maximum rate constant of 3-4 s-1, respectively. These results are consistent with the idea that the delta A(590) signal is primarily due to changes in myoplasmic free [Mg] produced by a change in the Mg occupancy of the Ca,Mg sites on parvalbumin that results from the Ca transient.  相似文献   

7.
The effects of the anion perchlorate (present extracellularly at 8 mM) were studied on functional skeletal muscle fibers from Rana pipiens, voltage-clamped in a Vaseline gap chamber. Established methods were used to monitor intramembranous charge movement and flux of Ca release from the sarcoplasmic reticulum (SR) during pulse depolarization. Saponin permeabilization of the end portions of the fiber segment (Irving, M., J. Maylie, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:1-41) substantially reduced the amount of charge moving during conventional control pulses, thus minimizing a technical error that plagued our previous studies. Perchlorate prolonged the ON time course of charge movement, especially at low and intermediate voltages. The OFFs were also made slower, the time constant increasing twofold. The hump kinetic component was exaggerated by ClO4- or was made to appear in fibers that did not have it in reference conditions. ClO4- had essentially no kinetic ON effects at high voltages (> or = 10 mV). ClO4- changed the voltage distribution of mobile charge. In single Boltzmann fits, the midpoint potential V was shifted -20 mV and the steepness parameter K was reduced by 4.7 mV (or 1.78-fold), but the maximum charge was unchanged (n = 9). Total Ca content in the SR, estimated using the method of Schneider et al. (Schneider, M. F., B. J. Simon, and G. Szucs. 1987. Journal of Physiology. 392:167-192) for correcting for depletion, stayed constant over tens of minutes in reference conditions but decayed in ClO4- at an average rate of 0.3 mumol/liter myoplasmic water per s. ClO4- changed the kinetics of release flux, reducing the fractional inactivation of release after the peak. ClO4- shifted the voltage dependence of Ca release flux. In particular, the threshold voltage for Ca release was shifted by about -20 mV, and the activation of the steady component of release flux was shifted by > 20 mV in the negative direction. The shift of release activation was greater than that of mobile charge. Thus the threshold charge, defined as the minimum charge moved for eliciting a detectable Ca transient, was reduced from 6 nC/microF (0.55, n = 7) to 3.4 (0.53). The average of the paired differences was 2.8 (0.33, P < 0.01). The effects of ClO4- were then studied in fibers in modified functional situations. Depletion of Ca in the SR, achieved by high frequency pulsing in the presence of intracellular BAPTA and EGTA, simplified but did not eliminate the effects of ClO4-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Cut fibers (striation spacing, 3.6-4.2 microns) were mounted in a double Vaseline-gap chamber and studied at 14-15 degrees C. One or both of the Ca indicators fura-2 and purpurate-3,3' diacetic acid (PDAA) were introduced into the optical recording site by diffusion from the end pools. Sarcoplasmic reticulum (SR) Ca release was elicited by action potential stimulation. With resting [fura-2] = 0 mM at the optical site, the [Ca] transient measured with PDAA was used to estimate SR Ca release (Baylor, S.M., W.K. Chandler, and M.W. Marshall. 1983. Journal of Physiology. 344:625-666). With resting [fura-2] > 0 mM, the contribution from Ca complexation by fura-2 was added to the estimate. When resting [fura-2] was increased from 0 to 0.5-2 mM, both the amount of SR Ca release and the maximal rate of release were increased by approximately 20%. These results are qualitatively similar to those obtained in intact fibers (Baylor, S.M., and S. Hollingworth. 1988. Journal of Physiology. 403:151-192; Hollingworth, S., A. B. Harkins, N. Kurebayashi, M. Konishi, and S. M. Baylor. 1992. Biophysical Journal. 63:224-234) and are consistent with a reduction of Ca inactivation of SR Ca release produced by 0.5-2 mM fura-2. With resting [fura-2] > or = 2 mM, the PDAA [Ca] transient was reduced to nearly zero and SR Ca release could be estimated from delta [Cafura-2] alone. When resting [fura-2] was increased from 2-4 to 5-6 mM, both the amount of SR Ca release and the maximal rate of release were decreased by approximately half, consistent with a possible reduction of Ca- induced Ca release (Jacquemond, V., L. Csernoch, M. G. Klein, and M. F. Schneider. 1991. Biophysical Journal. 60:867-873) or a possible pharmacological effect of fura-2.  相似文献   

9.
In experiments on cut muscle fibers mounted in a double Vaseline-gap chamber, electrical measurements are usually made by measuring the voltage V1(t) in one end pool and by passing current I2(t) from the other end pool to the central pool, which is usually clamped to earth potential. The voltage in the current-passing end pool is denoted by V2(t). This article describes how the value of the holding current, Ih, and the values of delta V2(infinity)/delta V1(infinity) and delta I2(infinity)/delta V1(infinity) that are associated with a small change in V1(t) can be used to estimate the linear cable parameters rm, ri, and re in a cut fiber that has been equilibrated with a Cs-containing internal solution. rm, ri, and re represent, respectively, the resistance of the plasma membranes, the internal longitudinal resistance, and the external longitudinal resistance under the Vaseline seals, all for a unit length of fiber. The apparent capacitance, Capp, of the preparation is defined to equal integral of infinity 0 delta I2,tr(t) dt/delta V1(infinity), in which delta I2,tr(t) represents the transient component of current that is associated with a change in V1(t) of amplitude delta V1(infinity). A method is described to estimate cm, the capacitance of the plasma membranes per unit length of fiber, from Capp and the values of rm, ri, and re. In experiments carried out with a tetraethylammonium chloride (TEA.Cl) solution at 13-14 degrees C in the central pool, cm remained stable for as long as 3-4 h. The values of cm, 0.19 microF/cm on average, and their variation with fiber diameter are similar to published results from intact fibers. This article also describes the different pathways that are taken by the current that flows from the current-passing end pool to the central pool. Approximately two-thirds of delta I2,tr(t) flows across the capacitance of the plasma membranes in the central-pool region. The rest flows either across plasma membranes that are under the two Vaseline seals or directly from the current-passing end pool to the central pool, across the external longitudinal resistance under the Vaseline seal. [There is also a current that flows directly from the voltage-measuring end pool to the central pool but this does not contribute to delta I2,tr(t).]  相似文献   

10.
Intact frog skeletal muscle fibers were injected with the Ca2+ indicator fura-2 conjugated to high molecular weight dextran (fura dextran, MW approximately 10,000; dissociation constant for Ca2+, 0.52 microM), and the fluorescence was measured from cytoplasm (17 degrees C). The fluorescence excitation spectrum of fura dextran measured in resting fibers was slightly red-shifted compared with the spectrum of the Ca(2+)-free indicator in buffer solutions. A simple comparison of the spectra in the cytoplasm and the in vitro solutions indicates an apparently "negative" cytoplasmic [Ca2+], which probably reflects an alteration of the indicator properties in the cytoplasm. To calibrate the indicator's fluorescence signal in terms of cytoplasmic [Ca2+], we applied beta-escin to permeabilize the cell membrane of the fibers injected with fura dextran. After treatment with 5 microM beta-escin for 30-35 min, the cell membrane was permeable to small molecules (e.g., Ca2+, ATP), whereas the 10-kD fura dextran only slowly leaked out of the fiber. It was thus possible to estimate calibration parameters in the indicator fluorescence in the fibers by changing the bathing solution [Ca2+] to various levels; the average values for the fraction of Ca(2+)-bound indicator in the resting fibers and the dissociation constant for Ca2+ (KD) were, respectively, 0.052 and 1.0 microM. For the comparison, the KD value was also estimated by a kinetic analysis of the indicator fluorescence change after an action potential stimulation in intact muscle fibers, and the average value was 2.5 microM. From these values estimated in the fibers, resting cytoplasmic [Ca2+] in frog skeletal muscle fibers was calculated to be 0.06-0.14 microM. The range lies between the high estimates from other tetracarboxylate indicators (0.1-0.3 microM; Kurebayashi, N., A. B. Harkins, and S. M. Baylor. 1993. Biophysical Journal. 64:1934-1960; Harkins, A. B., N. Kurebayashi, and S. M. Baylor. 1993. Biophysical Journal. 65:865-881) and the low estimate from the simultaneous use of aequorin and Ca(2+)-sensitive microelectrodes (< 0.04-0.06 microM; Blatter, L. A., and J. R. Blinks. 1991. Journal of General Physiology. 98:1141-1160) recently reported for resting cytoplasmic [Ca2+] in frog muscle fibers.  相似文献   

11.
Partial extraction of troponin C (TnC) decreases the Ca2+ sensitivity of tension development in mammalian skinned muscle fibers (Moss, R. L., G. G. Giulian, and M. L. Greaser. 1985. Journal of General Physiology. 86:585), which suggests that Ca2+-activated tension development involves molecular cooperativity within the thin filament. This idea has been investigated further in the present study, in which Ca2+-insensitive activation of skinned fibers from rabbit psoas muscles was achieved by removing a small proportion of total troponin (Tn) complexes. Ca2+-activated isometric tension was measured at pCa values (i.e., -log[Ca2+]) between 6.7 and 4.5: (a) in control fiber segments, (b) in the same fibers after partial removal of Tn, and (c) after recombination of Tn. Tn removal was accomplished using contaminant protease activity found in preparations of LC2 from rabbit soleus muscle, and was quantitated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning densitometry. Partial Tn removal resulted in the development of a Ca2+-insensitive active tension, which varied in amount depending on the duration of the extraction, and concomitant decreases in maximal Ca2+-activated tensions. In addition, the tension-pCa relation was shifted to higher pCa values by as much as 0.3 pCa unit after Tn extraction. Readdition of Tn to the fiber segments resulted in the reduction of tension in the relaxing solution to control values and in the return of the tension-pCa relation to its original position. Thus, continuous Ca2+-insensitive activation of randomly spaced functional groups increased the Ca2+ sensitivity of tension development in the remaining functional groups along the thin filament. In addition, the variation in Ca2+-insensitive active tension as a function of Tn content after extraction suggests that only one-third to one-half of the functional groups within a thin filament need to be activated for complete disinhibition of that filament to be achieved.  相似文献   

12.
Charge movements were measured in frog intact fibers with the three-microelectrode technique and in cut fibers with the double Vaseline gap technique. At 13-14 degrees C, the ON segments of charge movement records from both preparations showed an early I beta component and a late I gamma hump component. When an intact fiber was cooled to 4-7 degrees C, the time-to-peak of I gamma (tp,gamma) was prolonged, but I gamma still appeared as a hump. Q-V plots from intact fibers at 4-7 degrees C were fitted with a sum of two Boltzmann distribution functions (method 1). The more steeply voltage-dependent component, identified with Q gamma, accounted for 32.1% (SEM 2.2%) of the total charge. This fraction was larger than the 22.6% (SEM 1.5%) obtained by separating the ON currents with a sum of two kinetic functions (method 2). The total charge in cut fibers stretched to a sarcomere length of 3.5 microns at 13-14 degrees C was separated into Q beta and Q gamma by methods 1 and 2. The fraction of Q gamma in the total charge was 51.3% (SEM 1.7%) and 53.7% (SEM 1.8%), respectively, suggesting that cut fibers have a larger proportion of Q gamma:Q beta than intact fibers. When cut fibers were stretched to a sarcomere length of 4 microns, the proportion of Q gamma:Q beta was unchanged. Between 4 and 13 degrees C, the Q10 of l/tp,gamma in intact fibers was 2.33 (SEM 0.33) and that of 1/tau beta was less than 1.44 (SEM 0.04), implying that the kinetics of I gamma has a steeper temperature dependence than the kinetics of I beta. When cut fibers were cooled from 14 to 6 degrees C, I gamma in the ON segment generally became too broad to be manifested as a hump. In a cut fiber in which I gamma was manifested as a hump, the Q10 of l/tp,gamma was 2.08 and that of l/tau beta was less than 1.47. Separating the Q-V plots from cut fibers at different temperatures by method 1 showed that the proportion of Q gamma:Q beta was unaffected by temperature change. The appearance of I gamma humps at low temperatures in intact fibers but generally not in cut fibers suggests an intrinsic difference between the two fiber preparations.  相似文献   

13.
Cut muscle fibers from Rana temporaria (sarcomere length, 3.4-4.2 microns) were mounted in a double Vaseline-gap chamber (14-15 degrees C) and equilibrated with end-pool solutions that contained 20 mM EGTA and 1.76 mM Ca. Sarcoplasmic reticulum (SR) Ca release was estimated from changes in pH (Pape, P. C., D.-S. Jong, and W.K. Chandler. 1995. Journal of General Physiology. 106:000-000). Although the amplitude and duration of the [Ca] transient, as well as its spatial spread from the release sites, are reduced by EGTA, SR Ca release elicited by either depolarizing voltage-clamp pulses or action potentials behaved in a manner consistent with Ca inactivation of Ca release. After a step depolarization to -20 or 10 mV, the rate of SR Ca release, corrected for SR Ca depletion, reached a peak value within 5-15 ms and then rapidly decreased to a quasi-steady level that was about half the peak value; the time constant of the last half of the decrease was usually 2- 4 ms. Immediately after an action potential or a 10-15 ms prepulse to - 20 mV, the peak rate of SR Ca release elicited by a second stimulation, as well as the fractional amount of release, were substantially decreased. The rising phase of the rate of release was also reduced, suggesting that at least 0.9 of the ability of the SR to release Ca had been inactivated by the first stimulation. There was little change in intramembranous charge movement, suggesting that the changes in SR Ca release were not caused by changes in its voltage activation. These effects of a first stimulation on the rate of SR Ca release elicited by a second stimulation recovered during repolarization to -90 mV; the time constant of recovery was approximately 25 ms in the action- potential experiments and approximately 50 ms in the voltage-clamp experiments. Fura-2, which is able to bind Ca more rapidly than EGTA and hence reduce the amplitude of the [Ca] transient and its spatial spread from release sites by a greater amount, did not prevent Ca inactivation of Ca release, even at concentrations as large as 6-8 mM. These effects of Ca inactivation of Ca release can be simulated by the three-state, two-step model proposed by Schneider, M. F., and B. J. Simon (1988, Journal of Physiology. 405:727-745), in which SR Ca channels function as a single uniform population of channels. (ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Measurement of the state of optical polarization of light diffracted from single, skinned and intact fibers of anterior tibialis muscle from Rana pipiens revealed a dependence upon rigor, activation, and sarcomere length (SL) change. Changes in total birefringence, delta nT, and differential field ratio value, rT, were determined. In a relaxed, skinned fiber the total birefringence value, delta nT, decreases as sarcomere length is increased from 2.1 microns to approximately 2.8-3.0 microns. From there it increases significantly to a value of approximately 1.8 x 10(-3) at a sarcomere length of 3.6 microns. The differential field ratio, rT, also shows a biphasic response to increasing sarcomere length, first exhibiting a rapid decrease over shorter SL and leveling out after the SL is beyond 3.0 microns. In comparison, relaxed intact fibers change substantially less upon sarcomere length change, showing little change in birefringence and a small bi-phasic change in rT. Skinned fibers were activated using a solution that has the same ionic strength as the relaxing solution and allows repeatable, and sustained activation. A decrease in both delta nT and rT was observed upon fiber activation. The decrease in delta nT and rT was slightly larger at shorter sarcomere lengths than at longer lengths. Relaxed fibers placed in rigor showed changes in delta nT and rT similar to those observed in activated fibers. These results are consistent with the hypothesis that, after activation, a significant portion of the thick filament cross-bridges rotate towards the actin filament resulting in redistribution of the interfilament mass content. They are also consistent with an average orientation of crossbridges in the overlap region different from that in the nonoverlap region.  相似文献   

15.
Simulation of calcium sparks in cut skeletal muscle fibers of the frog   总被引:7,自引:0,他引:7  
Spark mass, the volume integral of Delta F/F, was investigated theoretically and with simulations. These studies show that the amount of Ca2+ bound to fluo-3 is proportional to mass times the total concentration of fluo-3 ([fluo-3T]); the proportionality constant depends on resting Ca2+ concentration ([Ca2+]R). In the simulation of a Ca2+ spark in an intact frog fiber with [fluo-3T] = 100 microM, fluo-3 captures approximately one-fourth of the Ca2+ released from the sarcoplasmic reticulum (SR). Since mass in cut fibers is several times that in intact fibers, both with similar values of [fluo-3T] and [Ca2+]R, it seems likely that SR Ca2+ release is larger in cut fiber sparks or that fluo-3 is able to capture a larger fraction of the released Ca2+ in cut fibers, perhaps because of reduced intrinsic Ca2+ buffering. Computer simulations were used to identify these and other factors that may underlie the differences in mass and other properties of sparks in intact and cut fibers. Our spark model, which successfully simulates calcium sparks in intact fibers, was modified to reflect the conditions of cut fiber measurements. The results show that, if the protein Ca2+-buffering power of myoplasm is the same as that in intact fibers, the Ca2+ source flux underlying a spark in cut fibers is 5-10 times that in intact fibers. Smaller source fluxes are required for less buffer. In the extreme case in which Ca2+ binding to troponin is zero, the source flux needs to be 3-5 times that in intact fibers. An increased Ca2+ source flux could arise from an increase in Ca2+ flux through one ryanodine receptor (RYR) or an increase in the number of active RYRs per spark, or both. These results indicate that the gating of RYRs, or their apparent single channel Ca2+ flux, is different in frog cut fibers--and, perhaps, in other disrupted preparations--than in intact fibers.  相似文献   

16.
We studied birefringence as an indicator of collagen fiber orientation in the diaphysis of the equine third metacarpal bone. We had previously shown that tissue from the lateral cortex of this bone is stronger monotonically, but less fatigue resistant, than tissue from the medial and dorsal regions. To learn whether collagen fiber orientation might play a role in this regional specialization, we tested three hypotheses using the same specimens: (1) collagen fiber orientation is regionally dependent; (2) remodeling changes collagen fiber orientation; (3) longitudinal collagen fibers correlate positively with modulus and monotonic bending strength and negatively with flexural fatigue life. Beams (N=36) cut parallel to the long axes of six pairs of bones had been tested to determine elastic modulus (N=36), and fatigue life (N=24) or monotonic strength (N=12) in four-point bending. Subsequently, histologic cross-sections were prepared, and porosity, active remodeling and past remodeling were quantified. Birefringence was measured as an indicator of transverse collagen orientation using plane-polarized light (PPL), and again using circularly polarized light (CPL). The CPL measurement was less variable than the PPL measurement. Both birefringence measures indicated that collagen was more longitudinally oriented in the lateral cortex than in the other two cortices. Longitudinally disposed collagen correlated with greater modulus and monotonic strength, but did not correlate with fatigue life. Remodeling was associated with more transverse collagen. Neither measure of birefringence was significantly correlated with porosity. It was concluded that, in the equine cannon bone, longitudinal collagen fiber orientation is regionally variable, contributes to increased modulus and strength but not fatigue life, and is reduced by osteonal remodeling.  相似文献   

17.
Responses from catfish retinal ganglion cells were evoked by a spot or an annulus of light and were analyzed by a procedure identical to the one used previously to study catfish amacrine cells (Sakai H. M., and K.-I. Naka, 1992. Journal of Neurophysiology. 67:430-442.). In two- input white-noise experiments, a response evoked by simultaneous stimulation of the center and surround was decomposed into the components generated by the center and surround through a process of cross-correlation. The center and surround responses were also decomposed into their linear and nonlinear components so that the response dynamics of the linear and nonlinear components could be measured. We found that the concentric organization of the receptive field was determined by linear components, i.e., the first-order kernels generated by the center and surround were of opposite polarity. Both the center and surround generated second-order kernels with similar signatures, i.e., the second-order components formed a monotonic receptive field. The peak response time of the first- and second-order kernels from the surround was longer by approximately 20 ms than that of the center. Except for the DC potential present in the intracellular responses, almost identical first- and second-order kernels for the center and surround were obtained from both the intracellular response and spike discharges. Thus, information on concentric organization of a receptive field is translated into spike discharges with little loss of information. A train of spike discharges carries, simultaneously, at least four kinds of information: two linear and two nonlinear components, which originate in the receptive field center and the surround. A spike train is not a simple signaling device but is a carrier of complex and multiple signals. Victor, J. D., and R. M. Shapley (1979. Journal of General Physiology. 74:671-687.) discovered similarly that, in the cat retina, static second-order nonlinearity is encoded into spike trains. Results obtained in this study support the thesis that signals generated by the preganglionic cells are translated into spike discharges without major modification and that those signals can be recovered from the spike trains (Sakuranaga, M., Y. Ando, and K.-I. Naka. 1987. Journal of General Physiology. 90:229-259.; Korenberg, M. J., H. M. Sakai, and K.-I. Naka. 1989. Journal of Neurophysiology. 61:1110-1120.). Current injection studies have shown that such signal transmission is possible (Sakai, H. M., and K.-I. Naka, 1988a. Journal of Neurophysiology. 60:1549-1567.; 1990. Journal of Neurophysiology. 63:105-119.).  相似文献   

18.
Cut muscle fibers from Rana temporaria (sarcomere length, 3.3-3.5 microns; temperature, 13-16 degrees C) were mounted in a double Vaseline-gap chamber and equilibrated for at least an hour with an internal solution that contained 20 mM EGTA and phenol red and an external solution that contained predominantly TEA-gluconate; both solutions were nominally Ca-free. The increase in total myoplasmic concentration of Ca (delta[CaT]) produced by sarcoplasmic reticulum (SR) Ca release was estimated from the change in pH produced when the released Ca was complexed by EGTA (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. Journal of General Physiology. 106:259-336). The resting value of SR Ca content, [CaSR]R (expressed as myoplasmic concentration), was taken to be equal to the value of delta[CaT] obtained during a step depolarization (usually to -50 to -40 mV) that was sufficiently long (200-750 ms) to release all of the readily releasable Ca from the SR. In ten fibers, the first depolarization gave [CaSR]R = 839-1,698 microM. Progressively smaller values were obtained with subsequent depolarizations until, after 30-40 depolarizations, the value of [CaSR]R had usually been reduced to < 10 microM. Measurements of intramembranous charge movement, Icm, showed that, as the value of [CaSR]R decreased, ON-OFF charge equality held and the amount of charge moved remained constant. ON Icm showed brief initial I beta components and prominent I gamma "humps", even after the value of [CaSR]R was < 10 microM. Although the amplitude of the hump component decreased during depletion, its duration increased in a manner that preserved the constancy of ON charge. In the depleted state, charge movement was steeply voltage dependent, with a mean value of 7.2 mV for the Boltzmann factor k. These and other results are not consistent with the idea that there is one type of charge, Q beta, and that I gamma is a movement of Q beta caused by SR Ca release, as proposed by Pizarro, Csernoch, Uribe, Rodriguez, and Rios (1991. Journal of General Physiology. 97:913-947). Rather, our results imply that Q beta and Q gamma represent either two distinct species of charge or two transitions with different properties of a single species of charge, and that SR Ca content or release or some related event alters the kinetics, but not the amount of Q gamma. Many of the properties of Q gamma, as well as the voltage dependence of the rate of SR Ca release for small depolarizations, are consistent with predictions from a simple model in which the voltage sensor for SR Ca release consists of four interacting charge movement particles.  相似文献   

19.
The birefringence of isolated skinned fibers from rabbit psoas muscle was measured continuously during relaxation from rigor produced by photolysis of caged ATP at sarcomere length 2.8-2.9 microns, ionic strength 0.1 M, 15 degrees C. Birefringence, the difference in refractive index between light components polarized parallel and perpendicular to the fiber axis, depends on the average degree of alignment of the myosin head domain with the fiber axis. After ATP release birefringence increased by 5.8 +/- 0.7% (mean +/- SE, n = 6) with two temporal components. A small fast component had an amplitude of 0.9 +/- 0.2% and rate constant of 63 s-1. By the completion of this component, the instantaneous stiffness had decreased to about half the rigor value, and the force response to a step stretch showed a rapid (approximately 1000 s-1) recovery phase. Subsequently a large slow birefringence component with rate constant 5.1 s-1 accompanied isometric force relaxation. Inorganic phosphate (10 mM) did not affect the fast birefringence component but accelerated the slow component and force relaxation. The fast birefringence component was probably caused by formation of myosin.ATP or myosin.ADP.Pi states that are weakly bound to actin. The average myosin head orientation at the end of this component is slightly more parallel to the fiber axis than in rigor.  相似文献   

20.
The Ca2+ sensitivities of the rate constant of tension redevelopment (ktr; Brenner, B., and E. Eisenberg. 1986. Proceedings of the National Academy of Sciences. 83:3542-3546) and isometric force during steady-state activation were examined as functions of myosin light chain 2 (LC2) phosphorylation in skinned single fibers from rabbit and rat fast-twitch skeletal muscles. To measure ktr the fiber was activated with Ca2+ and steady isometric tension was allowed to develop; subsequently, the fiber was rapidly (less than 1 ms) released to a shorter length and then reextended by approximately 200 nm per half sarcomere. This maneuver resulted in the complete dissociation of cross-bridges from actin, so that the subsequent redevelopment of tension was related to the rate of cross-bridge reattachment. The time course of tension redevelopment, which was recorded under sarcomere length control, was best fit by a first-order exponential equation (i.e., tension = C(1 - e-kt) to obtain the value of ktr. In control fibers, ktr increased sigmoidally with increases in [Ca2+]; maximum values of ktr were obtained at pCa 4.5 and were significantly greater in rat superficial vastus lateralis fibers (26.1 +/- 1.2 s-1 at 15 degrees C) than in rabbit psoas fibers (18.7 +/- 1.0 s-1). Phosphorylation of LC2 was accomplished by repeated Ca2+ activations (pCa 4.5) of the fibers in solutions containing 6 microM calmodulin and 0.5 microM myosin light chain kinase, a protocol that resulted in an increase in LC2 phosphorylation from approximately 10% in the control fibers to greater than 80% after treatment. After phosphorylation, ktr was unchanged at maximum or very low levels of Ca2+ activation. However, at intermediate levels of Ca2+ activation, between pCa 5.5 and 6.2, there was a significant increase in ktr such that this portion of the ktr-pCa relationship was shifted to the left. The steady-state isometric tension-pCa relationship, which in control fibers was left shifted with respect to the ktr-pCa relationship, was further left-shifted after LC2 phosphorylation. Phosphorylation of LC2 had no effect upon steady-state tension during maximum Ca2+ activation. In fibers from which troponin C was partially extracted to disrupt molecular cooperativity within the thin filament (Moss et al. 1985. Journal of General Physiology. 86:585-600), the effect of LC2 phosphorylation to increase the Ca2+ sensitivity of steady-state isometric force was no longer evident, although the effect of phosphorylation to increase ktr was unaffected by this maneuver.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号