首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of rat pinealocytes with 4 beta-phorbol 12,13-dibutyrate down-regulated protein kinase C (PKC) activity. Loss of activity was concentration-dependent (50% loss at 8 x 10(-7) M after 18 h of treatment) and time-dependent (50% loss after 2 h with 3 x 10(-6) M). Phenylephrine, an alpha 1-adrenergic agonist, and phorbol esters unable to activate PKC did not down-regulate the enzyme. alpha 1-Adrenergic amplification of beta-adrenergic stimulation of cyclic AMP accumulation, a response previously shown to be mediated by PKC activation, was reduced by only 50% in cells in which PKC activity was down-regulated by approximately 95%. These data suggest that there is not a simple proportional relationship between the degree of activation of pinealocyte PKC and the alpha 1-adrenergic amplification of beta-adrenergic cyclic AMP synthesis. In down-regulated cells, alpha 1-adrenergic amplification of beta-adrenergic induction of serotonin N-acetyltransferase activity, a key cyclic AMP-responsive enzyme involved in the nocturnal synthesis of the pineal hormone melatonin, was unchanged. Thus, even though alpha 1-adrenergic amplification of cyclic AMP synthesis is impaired, sufficient cyclic AMP is generated to allow a full induction of serotonin N-acetyltransferase activity. This finding raises the important question of whether the alpha 1-adrenergic amplification mechanism has a physiological role in regulating melatonin synthesis in vivo.  相似文献   

2.
We studied the modulation by protein kinase C (PKC) of the cyclic AMP (cAMP) accumulation induced by prostaglandin (PG) E2 in rat neonatal microglial cultures. Short pretreatment of microglia with phorbol 12-myristate 13-acetate (PMA) or 4beta-phorbol 12,13-didecanoate, which activate PKC, but not with the inactive 4alpha-phorbol 12,13-didecanoate, substantially reduced cAMP accumulation induced by 1 microM PGE2. The action of PMA was dose and time dependent, and the maximal inhibition (approximately 85%) was obtained after 10-min preincubation with 100 nM PMA. The inhibitory effect of PMA was mimicked by diacylglycerol and was prevented by the PKC inhibitor calphostin C. As PMA did not affect isoproterenol- or forskolin-stimulated cAMP accumulation, we investigated whether activation of PKC decreased cAMP production by acting directly at PGE2 EP receptors. Neither sulprostone (10(-9)-10(-5) M), a potent agonist at EP3 receptors (coupled to adenylyl cyclase inhibition), nor 17-phenyl-PGE2 (10(-6)-10(-5) M), an agonist of EP1 receptors, modified cAMP accumulation induced by forskolin. On the contrary, 11-deoxy-16,16-dimethyl PGE2, which does not discriminate between EP2 and EP4 receptors, both coupled to the activation of adenylyl cyclase, and butaprost, a selective EP2 agonist, induced a dose-dependent elevation of cAMP that was largely reduced by PMA pretreatment, as in the case of PGE2. These results indicated EP2 receptors as a possible target of PKC and suggest that PKC-activating agents present in the pathological brain may prevent the cAMP-mediated microglia-deactivating function of PGE2.  相似文献   

3.
The amounts of cAMP and cGMP in the rat pinealocyte are regulated by norepinephrine acting through synergistic dual receptor mechanisms involving alpha 1- and beta-adrenoceptors (Vanecek, J., Sugden, D., Weller, J.L., and Klein, D.C. (1985) Endocrinology 116, 2167-2173; Sugden, L., Sugden, D., and Klein, D.C. (1986) J. Biol. Chem. 261, 11608-11612). Based on the available evidence, it appears that Ca2+-phospholipid-dependent protein kinase is involved in the alpha 1-adrenergic potentiation of beta-adrenergic stimulation of cAMP, but not in the stimulation of cGMP (Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P., and Anderson, W.B. (1985) Nature 314, 359-361). In the present study the role of protein kinase C in the adrenergic stimulation of cGMP was reinvestigated, with the purpose of determining whether protein kinase C activators would potentiate the effects of beta-adrenergic agonists on cGMP if cells were also treated with agents known to elevate intracellular free Ca2+. The protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate (PMA) markedly elevated the cGMP content of beta-adrenergically stimulated pinealocytes which had also been treated with 1 microM A23187, 15 mM K+, or 1 microM ouabain. The effects of A23187 were blocked by EGTA and those of K+ were blocked by nifedipine, establishing the involvement of Ca2+. The stimulatory effects of PMA on cGMP accumulation were mimicked by other protein kinase C activators. PMA also stimulated cGMP accumulation in cells treated with cholera toxin (1 microgram/ml) and A23187 (1 microM), but not in cells treated only with cholera toxin. These results suggest that protein kinase C, which is activated in the pinealocyte by the alpha-adrenergic agonist phenylephrine, is probably involved in the adrenergic regulation of cGMP accumulation at a step distal to receptor activation.  相似文献   

4.
Rat hepatocytes were maintained in primary monolayer culture for 24 h in the presence of serum. Treatment of hepatocytes with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) for 5-15 min increased membrane-associated protein kinase C activity and concomitantly decreased soluble activity. Membrane protein kinase C activity returned to basal values within 1 h then decreased by more than 50% within 2 h. Prolonged (2-18 h) incubation with PMA did not further decrease protein kinase C activity. Pretreatment of hepatocytes with PMA for 5-15 min had little effect on the subsequent actions of 100 nM vasopressin but abolished the stimulation of inositol phosphate accumulation by 3 nM vasopressin and 20 microM norepinephrine. Long-term exposure (2-18 h) of hepatocytes to 1 microM PMA actually enhanced the effects of vasopressin and 20 microM norepinephrine. The stimulation by norepinephrine (20 microM) of inositol phosphate accumulation was abolished by the alpha 1-adrenergic antagonist prazosin (1 microM), whereas the beta-adrenergic antagonist propranolol (30 microM) had little effect. Addition of 8Br-cAMP (100 microM) or glucagon (10 nM) for 5 min or 8 h had no significant effect alone, but enhanced the subsequent vasopressin stimulation of inositol phosphate accumulation. There was no effect of 8Br-cAMP or glucagon on norepinephrine stimulation of phosphoinositide breakdown. These data indicate that the stimulation of phospholipase C activity in rat hepatocytes by 3 nM vasopressin is enhanced by cyclic AMP-dependent kinase but inhibited by protein kinase C. In contrast, down regulation of protein kinase C markedly enhanced the maximal phosphoinositide response due to both vasopressin and norepinephrine.  相似文献   

5.
Incubation of intact frog erythrocytes with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a tumor-promoting phorbol diester which activates protein kinase C, results in an approximate two- to threefold increase in subsequently tested beta-adrenergic agonist-stimulated adenylate cyclase activity. This increase is due to an elevation in the Vmax of the enzyme rather than to a change in affinity for the agonist. TPA treatment of frog erythrocytes does not alter the affinity (KD) or the binding capacity (Bmax) for the beta-adrenergic antagonist [125I]cyanopindolol. In addition, agonist/[125I]cyanopindolol competition curves are not affected by TPA pretreatment nor is their sensitivity to guanine nucleotides. Incubation of frog erythrocyte membranes alone with TPA does not promote sensitization or activation of adenylate cyclase activity. Pretreatment of intact frog erythrocytes with TPA also produces approximately two- to threefold increases in basal, guanine nucleotide-, prostaglandin E1-, forskolin-, NaF-, and MnCl2-stimulated adenylate cyclase activities in frog erythrocyte membranes. This enhancement of adenylate cyclase activity by TPA is induced rapidly (t1/2 approximately equal to 5 min) and with an EC50 of about 10(-7) to 10(-6) M. Other tumor-promoting phorbol diesters or phorbol diester-like compounds including 4 beta-phorbol 12,13-dibutyrate, 4 beta-phorbol 12,13-didecanoate, and mezerein are effective in promoting enhanced adenylate cyclase activity. In contrast, phorbols such as 4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate, and 4-O-methylphorbol 12-myristate 13-acetate, which are inactive in tumor promotion and which do not activate protein kinase C, do not affect frog erythrocyte adenylate cyclase activity. These data are suggestive of a protein kinase C-mediated phosphorylation of one of the adenylate cyclase components that is distal to the receptor, i.e., the nucleotide regulatory and/or catalytic components.  相似文献   

6.
The tumor-promoting phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), which activates protein kinase C, acted synergistically with A23187 to decrease muscarinic acetylcholine receptor (mAChR) number in neuroblastoma cells (clone N1E-115) as determined by a filter binding assay using [3H]quinuclidinyl benzilate in membrane homogenates. After a 6-h incubation, 10(-7) M PMA and 3 X 10(-7) M A23187 reduced mAChR number 30-40%, compared to the 40-50% reduction observed after treatment with 10(-3) M carbachol, a muscarinic agonist. Incubation with 3 X 10(-7) M A23187 and 10(-7) M 4 alpha-phorbol 12,13-didecanoate, an inactive phorbol ester, did not alter mAChR number. The addition of PMA and A23187 to cultures incubated with 10(-3) M carbachol caused only a modest 6% further reduction in mAChR number as compared to incubation with carbachol alone. The kinetics of the decrease in mAChR number produced by PMA/A23187 were similar to those seen after carbachol treatment. Recovery of mAChR number after treatment with either carbachol or PMA/A23187 was blocked by treatment with the protein synthesis inhibitor cycloheximide. Intact cell binding studies employing [3H]N-methylscopolamine showed that treatment with either PMA/A23187 or carbachol caused a rapid (within 15 min) loss of receptors from the cell surface prior to the decrease in total mAChR number. PMA (10(-7) M), but not 4 alpha-phorbol 12,13-didecanoate, promoted the translocation of protein kinase C activity from the cytosol to the membrane. Incubation with carbachol increased membrane-associated protein kinase C activity within 5 min with an EC50 of 3 X 10(-6) M. This increase persisted for at least 60 min in the continued presence of carbachol and was blocked by simultaneous incubation with atropine. These results suggest that activation of protein kinase C may be involved in the regulation of mAChR number in response to agonist.  相似文献   

7.
Using rapid deenergization as a probe for adenylate deaminase activity in intact adult rat cardiac myocytes, we have previously established that IMP formation is enhanced by alpha-adrenergic agonists. In the present study, the effect of adrenergic agents on adenylate deaminase was further characterized. Phenylephrine (PE)3 increased IMP production in a dose-dependent fashion with an EC50 of 8 x 10(-7) M. The response to PE was reversed within 10 min by the alpha 1-antagonist, prazosin. Likewise, adenylate deaminase was also activated in ventricular myocytes challenged with phorbol 12-myristate 13-acetate (PMA, EC50 = 5 nM); cardiac cells presented with 100 nM PMA increased IMP production from 4.4 +/- 0.5 (control) to 15.7 +/- 0.9 nmol/mg protein when subsequently deenergized. The effects of PMA and PE were attenuated 85 +/- 5% and 96 +/- 4%, respectively, by pretreatment of cells with 150 nM staurosporine, an inhibitor of protein kinase C. Furthermore, incubation of cardiac cells with 1 microM PMA for 24 h blunted the response to both PMA and phenylephrine 85-90%. Elevating cyclic AMP (cAMP) content to greater than 15 pmol/mg by treatment with forskolin or isoproterenol plus isobutylmethylxanthine also resulted in enhanced adenylate deaminase activity, but this stimulatory effect was not abolished by 24 h incubation with 5 microM PMA. Forskolin and PMA-induced increases in IMP production appeared to be additive. However, 0.5 microM isoproterenol inhibited the cellular response to phenylephrine by about 30% but did not affect PMA-stimulated adenylate deaminase activity. We conclude that both cAMP and protein kinase C stimulate adenylate deaminase, perhaps through selective activation of different isoforms. However, cAMP also exerts partial inhibition on alpha-adrenoreceptor-mediated increases in IMP production.  相似文献   

8.
The effects of submaximal doses of AlF4- to mobilize hepatocyte Ca2+ were potentiated by glucagon (0.1-1 nM) and 8-p-chlorophenylthio-cAMP. A similar potentiation by glucagon of submaximal doses of vasopressin, angiotensin II, and alpha 1-adrenergic agonists has been previously shown (Morgan, N. G., Charest, R., Blackmore, P. F., and Exton, J. H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4208-4212). When hepatocytes were pretreated with the protein kinase C activator 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), the effects of AlF4- to mobilize Ca2+, increase myo-inositol 1,4,5-trisphosphate (IP3), and activate phosphorylase were attenuated. Treatment of hepatocytes with PMA likewise inhibits the ability of vasopressin, angiotensin II, and alpha 1-adrenergic agonists to increase IP3 and mobilize Ca2+ (Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F. (1985) J. Biol. Chem. 260, 2844-2851). In contrast, the ability of AlF4- or angiotensin II to lower cAMP or inhibit glucagon-mediated increases in cAMP was unaffected by PMA. The ability of AlF4- to lower cAMP was attenuated in hepatocytes from animals treated with islet-activating protein, whereas Ca2+ mobilization was not modified. These results suggest that the lowering of cAMP induced by AlF4- and angiotensin II was mediated by the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase, whereas Ca2+ mobilization was not. Addition of glucagon, forskolin, or 8CPT-cAMP to hepatocytes raised IP3 and mobilized Ca2+. Both effects were blocked by PMA pretreatment, whereas cAMP and phosphorylase a levels were only minimally affected by PMA. The mobilization of Ca2+ induced by cAMP in hepatocytes incubated in low Ca2+ media was not additive with that induced by maximally effective doses of vasopressin, angiotensin II, or alpha 1-adrenergic agonists, indicating that the Ca2+ pool(s) affected by agents which increase cAMP is the same as that affected by Ca2+-mobilizing hormones which do not increase cAMP. These findings support the proposal that AlF4- mimics the effects of the Ca2+-mobilizing hormones in hepatocytes by activating a guanine nucleotide-binding regulatory protein (Np) which couples the hormone receptors to a phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphodiesterase. They also suggest that Np, PIP2 phosphodiesterase, or a factor involved in their interaction is activated following phosphorylation by cAMP-dependent protein kinase and inhibited after phosphorylation by protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma-derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12-O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha-phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become differentiated to organize into nongrowing tubes.  相似文献   

10.
P Onali  M C Olianas 《Life sciences》1987,40(12):1219-1228
In rat striatal synaptosomes, 4 beta-phorbol 12-myristate 13-acetate (PMA) and 4 beta-phorbol 12,13-dibutyrate (PDBu), two activators of Ca2+-phospholipid-dependent protein kinase (protein kinase C) increased dopamine (DA) synthesis measured by following the release of 14CO2 from L-[1-14C] tyrosine. Maximal stimulation (21-28% increase of basal rate) was produced by 0.5 microM PMA and 1 microM PDBu. 4 beta-Phorbol and 4 beta-phorbol 13-acetate, which are not activators of protein kinase C, were ineffective at 1 microM. PMA did not change the release of 14CO2 from L-[1-14C]DOPA. Addition of 1 mM EGTA to a Ca2+-free incubation medium failed to affect PMA stimulation. KC1 (60 mM) enhanced DA synthesis by 25%. Exposure of synaptosomes to either PMA or PDBu prior to KC1 addition resulted in a more than additive increase (80-100%) of DA synthesis. A similar synergistic effect was observed when the phorbol diesters were combined with either veratridine or d-amphetamine but not with forskolin and dibutyryl cyclic AMP. Pretreatment of striatal synaptosomes with phorbol diesters produced an activation on of tyrosine hydroxylase (TH) associated with a 60% increase of the Vmax and a decrease of the Km for the pterine cofactor 6-methyl-5,6,7,8-tetrahydropterin. These results indicate that protein kinase C participates in the regulation of striatal TH in situ and that its activation may act synergistically with DA releasing agents in stimulating DA synthesis.  相似文献   

11.
We investigated the role of cyclic AMP (cAMP) in alpha 2- and possible beta-adrenergic regulation of arylalkylamine-N-acetyltransferase (NAT), the penultimate enzyme in the biosynthesis of melatonin. The study was performed on primary cultures of dispersed chick pineal cells. Electron microscopy indicated that approximately 70% of the dispersed cells were modified photoreceptors. A similar proportion of melatoninergic cells was detected by immunocytochemical labeling of hydroxyindole-O-methyltransferase, the final enzyme in the biosynthesis of melatonin. Adrenergic agonists caused a sustained 50% inhibition of forskolin-augmented cAMP levels and NAT activity, with an alpha 2-adrenergic potency order of UK 14,304 greater than or equal to clonidine greater than norepinephrine greater than phenylephrine. Noradrenergic inhibition of 3-isobutyl-1-methylxanthine-augmented cAMP levels and NAT activity was reversed by yohimbine (an alpha 2-adrenergic antagonist) but not by prazosin (an alpha 1-adrenergic antagonist). The alpha-adrenergic inhibition of cAMP accumulation and NAT activity was prevented by pertussis toxin. Addition of propranolol (a beta-adrenergic antagonist) was necessary to observe an inhibitory effect of norepinephrine on cAMP levels but not on NAT activity. Similarly, the beta-adrenergic agonist isoproterenol transiently increased cAMP levels but did not affect NAT activity. The data indicate that the alpha 2-adrenergic inhibition of NAT activity in chick pineal cells is strongly correlated with an inhibition of cAMP accumulation. The lack of beta-adrenergic effect on NAT suggests that beta-adrenoceptors might be on a subset of cells that do not produce melatonin or that the beta-adrenergic-induced increase in cAMP levels is too transient to affect NAT.  相似文献   

12.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

13.
In the rat pineal gland, alpha 1-adrenergic agonists, which stimulate arachidonic acid release, also potentiate vasoactive intestinal peptide (VIP)- or beta-adrenergic-stimulated cyclic AMP (cAMP) and cyclic GMP (cGMP) accumulation. In this study, the possible involvement of the arachidonic acid pathway in the potentiation mechanism was examined in dispersed rat pinealocytes using two inhibitors of the arachidonic acid cascade, indomethacin and nordihydroguaiaretic acid. These two inhibitors appeared to have differential effects on the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP responses. Whereas nordihydroguaiaretic acid was effective in suppressing both the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP responses, indomethacin inhibited selectively the VIP-mediated cAMP and cGMP responses. The role of arachidonic acid metabolites was further determined using several prostaglandins--A2, I2, E2, and F2 alpha--and leukotrienes--B4, C4, and D4. Of the seven compounds tested, prostaglandins E2 and F2 alpha stimulated basal cAMP but not cGMP accumulation. The prostaglandin E2- and F2 alpha-stimulated cAMP responses were additive to those stimulated by VIP or beta-adrenergic receptors. The other five compounds had no effects on basal or VIP- or beta-adrenergic-stimulated cAMP or cGMP accumulation. Taken together, these findings indicate that the arachidonic acid cascade is likely involved in the alpha 1-adrenergic potentiation of VIP- or beta-adrenergic-stimulated cAMP and cGMP accumulation. However, the specific arachidonic acid metabolite involved in the potentiation mechanisms of VIP- versus beta-adrenergic-stimulated cyclic nucleotide responses may be different.  相似文献   

14.
Treatment of isolated hepatocytes with the tumor-promoting agent, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) produced a time- and dose-dependent, non-competitive inhibition of alpha 1-adrenergic responses, including the activation of phosphorylase, increase in Ca2+ efflux, increase in free cytosolic Ca2+, and release of myo-inositol-1,4,5-P3. The actions of [8-arginine] vasopressin (AVP) on liver cells were also inhibited by PMA, but the inhibition could be overcome by high AVP concentrations. No significant inhibition of beta-adrenergic and glucagon-mediated activation of phosphorylase was induced by PMA and no inhibitory or synergistic effects of PMA were observed on the dose-dependent activation of phosphorylase by the Ca2+ ionophore A23187. In radioligand binding studies, PMA did not directly interfere with [3H]prazosin specific binding, the displacement of [3H]prazosin by (-)-norepinephrine nor with [3H]AVP specific binding to purified liver plasma membranes. Plasma membranes prepared from livers perfused with PMA exhibited a 30-44% reduction in [3H]prazosin binding capacity. Under identical conditions [3H]AVP binding was unchanged. The alpha 1-receptors remaining in membranes from PMA-treated livers had equivalent affinities for [3H]prazosin and (-)-norepinephrine, and were unaffected in terms of coupling to guanine nucleotide-regulating proteins as indicated by the ability of guanosine 5'-(beta, gamma-imido)triphosphate to promote the conversion of the remaining alpha 1-receptors into a low affinity state. These data indicate that tumor promoters are potent antagonists of alpha 1-adrenergic and vasopressin (low dose) responses in liver. It is proposed that PMA acting via protein kinase C (which presumably mediates the action of PMA) exerts its inhibitory action on alpha 1-adrenergic responses at the alpha 1-adrenergic receptor itself and also at a site close to or before myo-inositol-1,4,5-P3 release.  相似文献   

15.
We have investigated phospholipase D activity in rat brain cortical slices prelabeled with [32P]orthophosphoric acid. In the presence of ethanol (170 mM), norepinephrine stimulated, in a dose-dependent manner (EC50 = 2.2 microM), the accumulation of [32P]phosphatidylethanol as a result of phospholipase D activity. Norepinephrine-stimulated phospholipase D activity was completely inhibited by prazosin, a specific alpha 1-adrenergic antagonist (Ki = 2.8 nM). However, no accumulation of phosphatidylethanol was observed in the presence of the muscarinic agonist carbachol. The Ca2+ ionophore ionomycin and the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also stimulated [32P]phosphatidylethanol accumulation in cortical slices, in a dose- and time-dependent manner, whereas the inactive phorbol, 4 alpha-phorbol 12,13-didecanoate, did not stimulate phospholipase D activity. Staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, two potent inhibitors of protein kinase C, inhibited PMA and ionomycin stimulation of phospholipase D activity, but did not affect the response to norepinephrine. Furthermore, the effects of PMA and norepinephrine were additive. Differences between PMA and norepinephrine stimulation of phospholipase D activity were also found with regard to the extracellular Ca2+ requirement and time course of phosphatidylethanol accumulation. No stimulation of phospholipase D activity by norepinephrine was observed in slices from cerebellum, a brain area with a low density of alpha 1-adrenergic receptors, while the effect of PMA was greater in the cerebellum than in cortical or hippocampal slices. These results strongly suggest that activation of phospholipase D in cortical slices by norepinephrine and PMA involve different mechanisms.  相似文献   

16.
Previous studies have shown that thrombomodulin (TM) on endothelial cells is down-regulated by endotoxin, interleukin-1 beta (IL-1 beta), and tumor necrosis factor (TNF). This loss of anti-coagulant potential is thought to be related to the hypercoagulable state in sepsis, inflammation, and cancer. The current studies describe up-regulation of TM in human umbilical vein endothelial cells (HUVECs) by several compounds as judged by increased surface cofactor activity, surface TM antigen, and TM mRNA levels. Surface TM activity was increased by active phorbol esters (10(-8) M, 24-48 h), analogs of cAMP (1-10 mM, 4 h), and forskolin (10(-5) M, 24-48 h). Up-regulation of TM in HUVECs by 4 beta-phorbol 12-myristate 13-acetate (PMA) and dibutyryl cAMP (dBcAMP) was due to de novo synthesis of TM protein resulting from increased TM mRNA levels. The results suggest that protein kinase C and protein kinase A may be involved in cellular regulatory mechanisms for TM expression. In addition, PMA effects on surface TM activity are biphasic, with an initial reduction followed by a significant enhancement. Hence, we propose that compounds capable of increasing intracellular cAMP concentrations in HUVECs may be useful in preventing thrombosis by increasing the anti-thrombotic properties of endothelial cells.  相似文献   

17.
The hormonal control of glycogen synthase and phosphorylase interconversion was investigated in hepatocytes isolated from lean and genetically obese (fa/fa) rats. In cells from obese animals, the inactivation of synthase by 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), phospholipase C, vasopressin and the alpha 1-adrenergic agonist phenylephrine was markedly impaired, and the property of PMA to counteract phosphorylase activation by phenylephrine was attenuated. The maximal response of phosphorylase activation to phenylephrine and vasopressin was increased in obese-rat hepatocytes, but the sensitivity to these hormones was similar to that in lean-rat hepatocytes. These observations indicate that the defect in protein kinase C that we reported previously in heart of insulin-resistant fa/fa rats [van de Werve, Zaninetti, Lang, Vallotton & Jeanrenaud (1987) Diabetes 36, 310-319] is probably also expressed in liver.  相似文献   

18.
We studied the effect of activation of protein kinase C (PKC) by a phorbol ester on cAMP accumulation in fetal rat osteoblasts. Activation of PKC by phorbol 12-myristate 13-acetate (PMA) caused a potentiation of cAMP accumulation induced by parathyroid hormone (PTH), forskolin, and cholera toxin. The results suggest that the potentiating effect of PMA on PTH-induced cAMP accumulation was not due to an effect on the PTH-receptor nor to an effect on cAMP degradation, as the effect of PMA persisted in the presence of a phosphodiesterase inhibitor. Pretreatment of the cells with pertussis toxin did not prevent the action of PMA, indicating that PMA does not act via the inhibitory G-protein. PMA had a biphasic effect on prostaglandin E2 (PGE2)-induced cAMP accumulation; i.e., at concentrations greater than or equal to 10(-6) M, PMA potentiated the PGE2-induced cAMP response but PMA attenuated cAMP accumulation induced by concentrations of PGE2 less than or equal to 5.10(77) M. From our data we conclude that PKC can interact with a stimulated cAMP pathway in a stimulatory and inhibitory manner. Potentiation of cAMP accumulation is probably due to modification of the adenylate cyclase complex, whereas attenuation of stimulated cAMP accumulation appears to be due to an effect on a different site of the cAMP generating pathway, which may be specific to PGE2-induced cAMP accumulation.  相似文献   

19.
The role of Ca2+ in the adrenergic stimulation of pinealocyte cAMP and cGMP was investigated. In this tissue alpha 1-adrenoceptor activation, which by itself is without effect, potentiates beta 1-adrenergic stimulation of cAMP and cGMP 30- to 100-fold. The present results indicate that chelation of extracellular Ca2+ with EGTA or inhibition of Ca2+ influx with inorganic Ca2+ channel blockers (La3+, Co2+, Mn2+) markedly reduces the cyclic nucleotide response to norepinephrine, a mixed alpha 1- and beta-adrenergic agonist, but not to isoproterenol, a beta-adrenergic agonist. In addition, the potentiating effects of alpha 1-adrenergic agonists were mimicked by agents which elevate cytosolic Ca2+, including K+ (EC50 = 2 X 10(-2) M), ouabain (EC50 = 2 X 10(-6) M), ionomycin (EC50 = 3 X 10(-6) M), and A23187 (EC50 = 2 X 10(-6) M); each potentiated the effects of beta-adrenergic stimulation but had no effect alone. Together these results indicate that an alpha 1-adrenoceptor-stimulated Ca2+ influx is essential for norepinephrine to increase pinealocyte cAMP and cGMP.  相似文献   

20.
The hypothesis that Gi might be involved in the alpha 1-adrenergic, protein kinase C (PKC)-mediated amplification of beta-adrenergic cyclic AMP stimulation in rat pinealocytes was investigated. Treatment of pinealocytes with a high concentration of pertussis toxin (500 ng/ml, 18 h) almost completely (approximately 95%) inactivated two cell membrane G-proteins (kDa 40.7 and 39.8) judged by back ADP-ribosylation of pinealocyte membrane proteins. However, this treatment failed to inhibit either the beta-adrenergic (isoprenaline, ISO 10(-6) M), alpha 1-plus beta-adrenergic (noradrenaline, NA 10(-5) M) or beta-adrenergic plus 12-O-tetradecanoylphorbol 13-acetate (TPA 10(-7) M) induced stimulation of cyclic AMP or cyclic GMP. These results suggest that alpha 1-adrenergic potentiation of beta-adrenergic stimulation of cyclic AMP and cyclic GMP does not involve a pertussis toxin-sensitive G-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号