首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning of the rfb genes of Shigella flexneri 2a into Escherichia coli K-12 strain DH1 results in the synthesis of lipopolysaccharides (LPS) with an O-antigen chain having type antigen IV and group antigens 3,4. During genetic studies of these rfb genes in E. coli K-12, we observed that strains harbouring plasmids with certain mutations (inversion and transposon insertions) which should have blocked O-antigen synthesis nevertheless still produced LPS with O-antigen chains. These LPS migrated differently on silver-stained SDS—polyacrylamide gels, compared with the LPS produced by wild-type rfb genes, and the group 3,4 antigens were barely detectable, suggesting that the O-antigen was altered. Investigation of the genetic determinants for production of the altered O-antigen/LPS indicated that: (i) these LPS are produced as a result of mutations which are either polar on rfbF or inactivate rfbF; (ii) the rfbX gene product (or a similar protein in the E. coli K-12 rfb region) is needed for production of the altered O-antigen in the form of LPS; (iii) the rfbG gene product is required for the production of both the parental and altered LPS; (iv) the dTDP-rhamnose biosynthesis genes are required. Additionally, an E. coli K-12 gene product(s) encoded outside the rfb region also contributes to production of the O-antigen of the altered LPS. An antiserum raised to the altered LPS from strain DH1(pPM2217 (rfbX::Tn1725)) was found to cross-react with nearly all S. flexneri serotypes, and with the altered LPS produced by other DH1 strains harbouring plasmids with different rfb mutations, as described above. The reactivity of the altered LPS with a panel of monoclonal antibodies specific for various S. flexneri O-antigen type and group antigens demonstrated that their O-antigen components were closely related to that of S. flexneri serotype 4. The RfbF and RfbG proteins were shown to have similarity to rhamnose transferases, and we identified a motif common to the N-termini of 6-deoxy-hexose nucleotide sugar transferases. We propose that the E. coli K-12 strains harbouring the mutated S. flexneri rfb genes produce LPS with a hybrid O-antigen as a consequence of inactivation of RfbF and complementation by an E. coli K-12 gene product. Analysis of the genetic and immunochemical data suggested a possible structure for the O-antigen component of the altered LPS.  相似文献   

2.
Shigella flexneri is a gram-negative bacterium that causes diarrhea and dysentery by invasion and spread through the colonic epithelium. Bacteria spread by assembling actin and other cytoskeletal proteins of the host into “actin tails” at the bacterial pole; actin tail assembly provides the force required to move bacteria through the cell cytoplasm and into adjacent cells. The 120-kDa S. flexneri outer membrane protein IcsA is essential for actin assembly. IcsA is anchored in the outer membrane by a carboxy-terminal domain (the β domain), such that the amino-terminal 706 amino acid residues (the α domain) are exposed on the exterior of the bacillus. The α domain is therefore likely to contain the domains that are important to interactions with host factors. We identify and characterize a domain of IcsA within the α domain that bears significant sequence similarity to two repeated domains of rickettsial OmpA, which has been implicated in rickettsial actin tail formation. Strains of S. flexneri and Escherichia coli that carry derivatives of IcsA containing deletions within this domain display loss of actin recruitment and increased accessibility to IcsA-specific antibody on the surface of intracytoplasmic bacteria. However, site-directed mutagenesis of charged residues within this domain results in actin assembly that is indistinguishable from that of the wild type, and in vitro competition of a polypeptide of this domain fused to glutathione S-transferase did not alter the motility of the wild-type construct. Taken together, our data suggest that the rickettsial homology domain of IcsA is required for the proper conformation of IcsA and that its disruption leads to loss of interactions of other IcsA domains within the amino terminus with host cytoskeletal proteins.  相似文献   

3.
The Shigella flexneri outer membrane (OM) protease IcsP (SopA) is a member of the enterobacterial Omptin family of proteases which cleaves the polarly localised OM protein IcsA that is essential for Shigella virulence. Unlike IcsA however, the specific localisation of IcsP on the cell surface is unknown. To determine the distribution of IcsP, a haemagglutinin (HA) epitope was inserted into the non-essential IcsP OM loop 5 using Splicing by Overlap Extension (SOE) PCR, and IcsPHA was characterised. Quantum Dot (QD) immunofluorescence (IF) surface labelling of IcsPHA was then undertaken. Quantitative fluorescence analysis of S. flexneri 2a 2457T treated with and without tunicaymcin to deplete lipopolysaccharide (LPS) O antigen (Oag) showed that IcsPHA was asymmetrically distributed on the surface of septating and non-septating cells, and that this distribution was masked by LPS Oag in untreated cells. Double QD IF labelling of IcsPHA and IcsA showed that IcsPHA preferentially localised to the new pole of non-septating cells and to the septum of septating cells. The localisation of IcsPHA in a rough LPS S. flexneri 2457T strain (with no Oag) was also investigated and a similar distribution of IcsPHA was observed. Complementation of the rough LPS strain with rmlD resulted in restored LPS Oag chain expression and loss of IcsPHA detection, providing further support for LPS Oag masking of surface proteins. Our data presents for the first time the distribution for the Omptin OM protease IcsP, relative to IcsA, and the effect of LPS Oag masking on its detection.  相似文献   

4.
Shigella flexneri, a Gram-negative bacillus belonging to the family Enterobacteriaceae, causes bacillary dysentery in humans by invading colonic epithelial cells. Processes by which epithelial cells, which are not professional phagocytes, may limit the spread of the invading microorganisms are poorly understood. This paper shows that IcsA (VirG), a 120kDa bacterial outer membrane protein responsible for intracellular and cell-to-cell spread through polymerization of actin, is a major substrate for phosphorylation by cyclic-dependent protein kinases. Site-directed mutagenesis of a sequence encoding phosphorylation consensus motif SSRRASS, located at residues 754–760, almost completely abolished the ability of this protein to be phosphorylated by protein kinase A. Such mutants expressed a ‘super Ics’ phenotype, characterized by an increased capacity to spread from cell-to-cell during the first three hours of infection in the HeLa cell infection assay. These data suggest that host-cell phosphorytation of key virulence proteins located on the bacterial surface may represent a significant host defence mechanism during the invasion process.  相似文献   

5.
Shigella flexneri replicates in the cytoplasm of host cells, where it nucleates host cell actin filaments at one pole of the bacterial cell to form a 'comet tail' that propels the bacterium through the host's cytoplasm. To determine whether the ability to move by actin-based motility is sufficient for subsequent formation of membrane-bound protrusions and intercellular spread, we conferred the ability to nucleate actin on a heterologous bacterium, Escherichia coli . Previous work has shown that IcsA (VirG), the molecule that is necessary and sufficient for actin nucleation and actin-based motility, is distributed in a unipolar fashion on the surface of S. flexneri . Maintenance of the unipolar distribution of IcsA depends on both the S. flexneri outer membrane protease IcsP (SopA) and the structure of the lipopolysaccharide (LPS) in the outer membrane. We co-expressed IcsA and IcsP in two strains of E. coli that differed in their LPS structures. The E. coli were engineered to invade host cells by expression of invasin from Yersinia pseudotuberculosis and to escape the phagosome by incubation in purified listeriolysin O (LLO) from Listeria monocytogenes . All E. coli strains expressing IcsA replicated in host cell cytoplasm and moved by actin-based motility. Actin-based motility alone was sufficient for the formation of membrane protrusions and uptake by recipient host cells. The presence of IcsP and an elaborate LPS structure combined to enhance the ability of E. coli to form protrusions at the same frequency as S. flexneri , quantitatively reconstituting this step in pathogen intercellular spread in a heterologous organism. The frequency of membrane protrusion formation across all strains tested correlates with the efficiency of unidirectional actin-based movement, but not with bacterial speed.  相似文献   

6.
7.
Four serotypes of two genera, Escherichia coli O8 and O9 and Klebsiella O3 and O5, produce the O polysaccharides consisting of mannose homopolymers. Previously we reported the isolation and expression of E. coli O9 rfb in E. coli K-12 strains (Kido et al, J. Bacteriol., 171: 3629–3633, 1989). In this study, R' plasmids carrying his-rfb region of the other three strains were isolated and expressed in E. coli K-12 strain. Serological study of lipopolysaccharides (LPS) synthesized in E. coli K-12 strain was carried out. His-linked rfb genes from E. coli O9 and Klebsiella O3 directed the synthesis of O polysaccharides with the same antigenicity as those of the parental strains in E. coli K-12 strain. On the other hand, rfb genes from E. coli O8 and Klebsiella O5 directed the synthesis of O polysaccharides which were antigenically not identical but partially common to those of the parental strains. A rough strain derived from E. coli O8 synthesized LPS which showed the identical antigenicity as the wild strain when the his-rfb region of E. coli O8 was introduced. The results suggest that some genes located distantly from his are additionally required to complete the synthesis of O polysaccharides of E. coli O8 and Klebsiella O5.  相似文献   

8.
Leptospirosis is an important epidemic zoonosis worldwide. Currently, there are more than 250 Leptospira pathogenic serovars known that can potentially infect humans. Conventional classification of leptospires with the serovar as the basic taxon, based on serological recognition of lipopolysaccharide (LPS) composition does not correlate well with species determination, based on general genomic features. Here, we investigate the selective amplification of polymorphic regions from the LPS biosynthesis loci (rfb) as a potential tool for serovar typing of Leptospira interrogans species. Eight pairs of primers were designed to target six ORFs from the rfb operon with varying levels of sequence polymorphism. They were tested both separately and multiplexed. Half of these primer pairs produced serovar-specific amplicons, allowing the identification of some specific serovars and also groups of serovars. It was shown that the serovar classification of Leptospira can be accessed by selective amplification of rfb operons in some cases, which may permit a parallel between the serological and the genomic classifications of Leptospira. As a conclusion, the selective amplification of rfb generated promising and already useful results, but it appears necessary to characterize a larger variety of Leptospira genomes or rfb operons to fully develop this method.  相似文献   

9.
The spreading ability of Shigella flexneri , a facultative intracellular Gram-negative bacterium, within the host-cell cytoplasm is the result of directional assembly and accumulation of actin filaments at one pole of the bacterium. IcsA/VirG, the 120 kDa outer membrane protein that is required for intracellular motility, is located at the pole of the bacterium where actin polymerization occurs. Bacteria growing in laboratory media and within infected cells release a certain proportion of the surface-exposed IcsA after proteolytic cleavage. In this study, we report the characterization of the sopA gene which is located on the virulence plasmid and encodes the protein responsible for the cleavage of IcsA. The deduced amino acid sequence of SopA exhibits 60% identity with those of the OmpT and OmpP outer membrane proteases of Escherichia coli . The construction and phenotypic characterization of a sopA mutant demonstrated that SopA is required for exclusive polar localization of IcsA on the bacterial surface and proper expression of the motility phenotype in infected cells.  相似文献   

10.
Summary Vibrio cholerae strains of the 01 serotype have been classified into three subclasses, Ogawa, Inaba and Hikojima, which are associated with the O-antigen of the lipopolysaccharide (LPS). The DNA encoding the biosynthesis of the O-antigen, the rfb locus, has been cloned and analysed (Manning et al. 1986; Ward et al. 1987). Transposon mutagenesis of the Inaba and Ogawa strains of V. cholerae, using Tn5 or Tn2680 allowed the isolation of a series of independent mutants in each of these serotypes. Some of the insertions were mapped to the rfb region by Southern hybridization using the cloned rfb DNA as a probe, confirming this location to be responsible for both O-antigen production and serotype specificity. The other insertions allowed a second region to be identified which is involved in V. cholerae LPS biosynthesis.  相似文献   

11.
The O-polysaccharide fraction of the lipopolysaccharide from Klebsiella pneumoniae serotype O8 was found to comprise two galactose-containing homopolymers. Structural analysis, using chemical and high-field nuclear magnetic resonance (NMR) techniques, established that the K. pneumoniae O8 polysaccharides are composed of the linear, disaccharide repeating units OAc 1 2/6 →3)-β-d -Galf-(1 →3)-α- d -Galp-(1→d -Galactan I-OAc →3)-α-d -Galp-(1 →3)-β-d -Galp-(1→d -Galactan II. K. pneumoniae O8 mutant RFK-1 was isolated by resistance to phage KO1-2; strain RFK-1 expressed only d -galactan I-OAc. The 1H- and 13C-NMR resonances from this O-polysaccharide indicate that all of the O-acetyl groups within the K. pneumoniae O8 polysaccharide are carried on d -galactan I and O-acetylation occurs only on the β- d -galactofuranose residues; 60% of the available β- d -galactofuranose residues are non-acetylated. The O-acetylation of the remaining residues is equally distributed between the O-2 and O-6 positions. The carbohydrate backbone structures in the O8 polysaccharide are identical to d -galactan I and II expressed by K. pneumoniae O1, accounting for the antigenic cross-reaction between strains belonging to serotypes O1 and O8. However, the O1 polysaccharides are not acetylated and the O-acetyl groups present in the K. pneumoniae serotype O8 polysaccharides provide a structural basis for their recognition as distinct serotypes. The rfb (O-polysaccharide biosynthesis) gene cluster of K. pneumoniae serotype O1 determines the synthesis of d -galactan I. rfbKpo1-specific gene probes were used to examine conservation in the rfb gene clusters of other K. pneumoniae serotypes which produce d -galactan I. Six O1 strains were examined and all showed hybridization with rfbKpO1 probes under conditions of high stringency. Three serotype O2 strains produce d -galactan I and these strains also contained DNA sequences recognized by rfbKpO1 probes under high stringency. The physical maps of these homologous rfb chromosomal regions showed some polymorphism. Surprisingly, the rfbKpO8 region from K. pneumoniae serotype O8 was only recognized by rfbKpO1 probes under low-stringency hybridization conditions, providing evidence for two substantially different clonal groups of rfb genes from K. pneumoniae strains with structurally related O-antigens.  相似文献   

12.
A 7.5 kb Kpnl-generated fragment, from within the rfb cluster of Salmonella typhimurium LT2 that encodes abequose synthase (the rfbJ gene) which is necessary for O4 antigen synthesis, and flanking sequences, was inserted into a suicide vector. Using allelic exchange techniques, these rfb sequences of S. typhimurium were integrated into the rfb clusters of wild-type Salmonella typhi Vi-positive strain ISP 1820 (i.e. serotype 09,12; Vi+ H-d), S. typhi Vi-negative strain H400 (i.e. serotype 09,12; Vi; H-d), and a double aro mutant of S. typhi ISP 1820, strain CVD 906, resulting in the isolation of strains H325, H404 and CVD 906-O4, respectively. Immunoblot analysis of lipopolysaccharide (LPS) purified from H325, H404 and CVD 906-O4 demonstrated that these 8trains express the 04 antigen (an abequose residue) in place of the O9 antigen (a tyvelose residue) in the LPS molecule. Hence, the serotype of H325 is O4,12; Vi+; H-d and the serotype of H404 is O4,12; Vi; H-d. DNA hybridization analysis of chromosomal DNA from H325, H404 and CVD 906-O4 confirmed that a precise recombination event within sequences flanking rfbSE of S. typhi (which encodes the enzymes necessary for cytidine diphosphate-tyvelose synthesis) resulted in replacement of rfbSE with rfbJ (which encodes abequose synthase and is necessary for O4 synthesis) of S. typhimurium in strains H325, H404 and CVD 906-O4. The resistance of each strain to the bactericidal effects of guinea-pig serum (GPC) was assessed. Whereas ISP 1820, H325 and H404 exhibit similar resistance patterns in GPC, strain H400 is sensitive to the bactericidal effects of GPC. The results suggest that the development of the O-antigen serotype diversity of Salmonella is probably the result of both sequence divergence and recombination  相似文献   

13.
Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min.), the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4–6 hr) by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG). Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.  相似文献   

14.
Outer membrane protein A (OmpA) is a multifaceted predominant outer membrane protein of Escherichia coli and other Enterobacteriaceae whose role in the pathogenesis of various bacterial infections has recently been recognized. Here, the role of OmpA on the virulence of Shigella flexneri has been investigated. An ompA mutant of wild-type S. flexneri 5a strain M90T was constructed (strain HND92) and it was shown to be severely impaired in cell-to-cell spreading since it failed to plaque on HeLa cell monolayers. The lack of OmpA significantly reduced the levels of IcsA while the levels of cell associated and released IcsP-cleaved 95 kDa amino-terminal portion of the mature protein were similar. Nevertheless, the ompA mutant displayed IcsA exposed across the entire bacterial surface. Surprisingly, the ompA mutant produced proper F-actin comet tails, indicating that the aberrant IcsA exposition at bacterial lateral surface did not affect proper activation of actin-nucleating proteins, suggesting that the absence of OmpA likely unmasks mature or cell associated IcsA at bacterial lateral surface. Moreover, the ompA mutant was able to invade and to multiply within HeLa cell monolayers, although internalized bacteria were found to be entrapped within the host cell cytoplasm. We found that the ompA mutant produced significantly less protrusions than the wild-type strain, indicating that this defect could be responsible of its inability to plaque. Although we could not definitely rule out that the ompA mutation might exert pleiotropic effects on other S. flexneri genes, complementation of the ompA mutation with a recombinant plasmid carrying the S. flexneri ompA gene clearly indicated that a functional OmpA protein is required and sufficient for proper IcsA exposition, plaque and protrusion formation. Moreover, an independent ompA mutant was generated. Since we found that both mutants displayed identical virulence profile, these results further supported the findings presented in this study.  相似文献   

15.
Septins, cytoskeletal proteins with well‐characterised roles in cytokinesis, form cage‐like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single‐cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri‐infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin‐related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin‐polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti‐Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria.  相似文献   

16.
Shigella sonnei is a bacterial pathogen and causative agent of bacillary dysentery. It deploys a type III secretion system to inject effector proteins into host epithelial cells and macrophages, an essential step for tissue invasion and immune evasion. Although the arsenal of bacterial effectors and their cellular targets have been studied extensively, little is known about the prerequisites for deployment of type III secreted proteins during infection. Here, we describe a novel S. sonnei adhesin, SSO1327 which is a multivalent adhesion molecule (MAM) required for invasion of epithelial cells and macrophages and for infection in vivo. The S. sonnei MAM mediates intimate attachment to host cells, which is required for efficient translocation of type III effectors into host cells. SSO1327 is non‐redundant to IcsA; its activity is independent of type III secretion. In contrast to the up‐regulation of IcsA‐dependent and independent attachment and invasion by deoxycholate in Shigella flexneri, deoxycholate negatively regulates IcsA and MAM in S. sonnei resulting in reduction in attachment and invasion and virulence attenuation in vivo. A strain deficient for SSO1327 is avirulent in vivo, but still elicits a host immune response.  相似文献   

17.
Molecular bases of epithelial cell invasion by Shigella flexneri   总被引:4,自引:0,他引:4  
The pathogenesis of shigellosis is characterized by the capacity of the causative microorganism, Shigella, to invade the epithelial cells that compose the mucosal surface of the colon in humans. The invasive process encompasses several steps which can be summarized as follows: entry of bacteria into epithelial cells involves signalling pathways that elicit a macropinocitic event. Upon contact with the cell surface, S. flexneri activates a Mxi/Spa secretory apparatus encoded by two operons comprising about 25 genes located on a large virulence plasmid of 220 kb. Through this specialized secretory apparatus, Ipa invasins are secreted, two of which (IpaB, 62 kDa and IpaC, 42 kDa) form a complex which is itself able to activate entry via its interaction with the host cell membrane. Interaction of this molecular complex with the cell surface elicits major rearrangements of the host cell cytoskeleton, essentially the polymerization of actin filaments that form bundles supporting the membrane projections which achieve bacterial entry. Active recruitment of the protooncogene pp 60c-src has been demonstrated at the entry site with consequent phosphorylation of cortactin. Also, the small GTPase Rho is controlling the cascade of signals that allows elongation of actin filaments from initial nucleation foci underneath the cell membrane. The regulatory signals involved as well as the proteins recruited indicate that Shigella induces the formation of an adherence plaque at the cell surface in order to achieve entry. Once intracellular, the bacterium lyses its phagocytic vacuole, escapes into the cytoplasm and starts moving the inducing polar, directed polymerization of actin on its surface, due to the expression of IcsA, a 120 kDa outer membrane protein, which is localized at one pole of the microorganism, following cleavage by SopA, a plasmid-encoded surface protease. In the context of polarized epithelial cells, bacteria then reach the intermediate junction and engage their components, particularly the cadherins, to form a protrusion which is actively internalized by the adjacent cell. Bacteria then lyse the two membranes, reach the cytoplasmic compartment again, and resume actin-driven movement.  相似文献   

18.
A plasmid that included both an 8.9 kb chromosomal DNA insert containing genes from the rfb cluster of Shigella dysenteriae 1 and a smaller insert containing the rfp gene from a S. dysenteriae 1 multicopy plasmid resulted in efficient expression of O antigen in an rfb-deleted strain of Escherichia coli K-12. Eight genes were identified in the rfb fragment: the rfbB-CAD cluster which encodes dTDP-rhamnose synthesis, rfbX which encodes a hydrophobic protein involved in assembly of the O antigen, rfc which encodes the O antigen polymerase, and two sugar transferase genes. The production of an O antigen also required the E. coli K-12 rfe gene, which is known to encode a transferase which adds N-acetyl-glucosamine phosphate to the carrier lipid unde-caprenol phosphate. Thus Rfe protein appears to function as an analogue of the Salmonella RfbP protein to provide the first sugar of the O unit. Functional analysis of the other genes was facilitated by the fact that partial O units of one, two or three sugars were efficiently transferred to the lipopolysaccharide core. This analysis indicated that the plasmid-encoded Rfp protein is the transferase that adds the second sugar of the O unit while the two rfb transferases add the distal sugars to make an O antigen whose structure is (Rha–Rha–Gal–GlcNAc)n. The use of the rfe gene product as the transferase that adds the first sugar of an O unit is a novel mechanism which may be used for the synthesis of other enteric O antigens.  相似文献   

19.
The pathogenesis of bacillary dysentery can be studied at different levels of integration of the cellular components that constitute the colonic mucosal barrier. We considered the interaction ofShigella flexneri in three experimental systems that provide complementary information and a scheme of events occurring in human colorectal mucosa asShigella invasion proceeds. Interaction ofS. flexneri with individual epithelial cells shows a series of events in which the bacterium, upon contact with the cell surface, releases a set of Ipa proteins (i.e. invasins) through a specialized, activable, type-III secretory apparatus (i.e. Mxi/Spa).Via a complex signaling process, these invasins cause major rearrangements of the subcortical cytoskeletal network which allow bacterial entry by a macropinocytotic event. Then the bacterium lyses its phagocytotic vacuole and initiates intracytoplasmic movement, due to polar assembly of actin filaments caused by a bacterial surface protein, IcsA. This allows very efficient colonization of the host cell cytoplasm and passage to adjacent cellsvia protrusions which are engulfed by a cadherin-dependent process. However, when invasiveShigella are deposited on the apical side of polarized monolayers of human colonic cells, they appear unable to invade, indicating that bacteria need to reach the subepithelial area to invade the epithelium. In this system, it has been shown that transepithelial signaling caused by apical bacteria induces adherence and transmigration of basal polymorphonuclears (PMN), thus disrupting the monolayer permeability and facilitating bacterial invasion. LPS accounts for a large part of this transepithelial signalization to PMN. Such a process could account for invasion in intestinal crypts. Finally, models of infection, such as the rabbit ligated intestinal loop show that initial bacterial entry occurs essentiallyvia M cells of the follicular associated epithelium. It then causes apoptosis of macrophages located in the follicular dome, inducing release of IL-1β which, in turn, initiates inflammation, leading to destabilization of the epithelial structures as modeled above. These data can now be used to understand the mechanisms of mucosal protection against bacillary dysentery. Presented at the1st International Minisymposium on Cellular Microbiology: Cell Biology and Signalization in Host-Pathogen Interactions, Prague, October 6, 1997.  相似文献   

20.
The nucleotide sequence of the proximal half of the rfb region of Shigella flexneri has been determined, and the genes encoding enzymes involved in the biosynthesis of dTDP-rhamnose have been identified. These genes show strong homology to the rfb genes encoding dTDP-rhamnose biosynthesis in Salmonella enterica serovar typhimurium (strain LT2) and S. enterica serovar anatum (strain M32) (Jiang et al., 1991; Wang et al., 1992). An open reading frame upstream of rfbB was also identified which encoded a protein having strong similarity with GalU, and has been designated galF. GalF has 92% amino acid sequence identity with an S. enterica LT2 gene, orf2X8, which is similarly situated upstream of rfbB (Jiang et al., 1991). The T7 expression system was utilized to identify proteins corresponding to those predicted from DNA sequence analysis. The similarity of the predicted proteins with proteins that are functionally identical or related, and with others of unknown function from the Yersinia enterocolitica O3 rfb region, and in the Escherichia coli K-12 rff region are also described. We have re-addressed the assignment of each gene of the dTDP-rhamnose pathway with the known enzymes of the pathway, in particular rfbC and rfbD. A reporter plasmid to detect genes encoding enzymes of the dTDP-rhamnose pathway is described. An analysis of the intergenic region between galF and rfbB has been made, and comparison with the same region from S. enterica LT2 discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号