共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest 总被引:1,自引:0,他引:1
Mi-sun Lee Kaneyuki Nakane Takayuki Nakatsubo Wen-hong Mo Hiroshi Koizumi 《Ecological Research》2002,17(3):401-409
The effects of rainfall events on soil CO2 fluxes were examined in a cool temperate Quercus/Betula forest in Japan. The soil CO2 fluxes were measured using an open-flow gas exchange system with an infrared gas analyzer in the snow-free season from August 1999 to November 2000. Soil CO2 flux showed no significant diurnal trend on days without rain. In contrast, rainfall events caused a significant increase in soil CO2 flux. To determine the effect of rainfall events and to evaluate more precisely the daily and annual soil carbon flux, we constructed a multiple polynomial regression model that included two variables, soil temperature and soil water content, using the soil CO2 flux data recorded on sunny days. Daily soil carbon fluxes on sunny days calculated by the model were almost the same as those determined by the field measurements. On the contrary, the fluxes measured on rainy days were significantly higher than those calculated daily from the soil carbon fluxes by the model. Annual soil carbon fluxes in 1999 and 2000 were estimated using models that both do and do not take rainfall effects into consideration. The result indicates that post-rainfall increases in soil CO2 flux represent approximately 16–21% of the annual soil carbon flux in this cool temperate deciduous forest. 相似文献
2.
Kanji Namikawa 《Ecological Research》1996,11(1):23-33
In 1979 and 1991, trees over 2.0 m high were measured and mapped together with their crown projections to clarify stand dynamics and shifts in canopy dominants during this period, in a permanent plot of 0.525 ha in an old-growth, cool temperate mixed forest of Mt Moiwa, Central Hokkaido, northern Japan. During this period, an abundant recruitment of trees was observed after some canopy trees were felled by a typhoon in 1981 leaving gaps in the canopy. Vigorous recruitment was observed forTilia japonica, Acer mono andPrunus ssiori. These species had different regeneration sites in relation to canopy state. NeitherUlmus japonica norKalopanax pictus had any recruits during the 12 year period even in gaps. The equilibrium composition of tree species projected from transition probability analysis also implied the above shift of dominant species during the 12 year period in the plot and suggested that the present forest is not in an equilibrium state. 相似文献
3.
M. CARNOL P. INESON J.M. ANDERSON F. BEESE M.P. BERG T. BOLGER M.-M. COÛTEAUX P. CUDLIN S. DOLAN M. RAUBUCH H.A. VERHOEF 《Biogeochemistry》1997,38(3):255-280
The effects of enhanced (NH4
2SO4deposition on soil solution cation and anion concentrations and annualionic fluxes were followed using a standardised experimental protocolin six European coniferous forests with contrasting soil types, pollutioninputs and climate. Native soil cores containing a ceramic suction cupwere installed in the field, roofed and watered every two weeks withlocal throughfall or local throughfall with added(NH4)2SO4 at 75 kgNH4
+-N ha-1 a-1. Livingroot systems were established in half of the lysimeters.Untreated throughfall NH4
+-N deposition at thesites ranged from 3.7 to 29 kg ha-1 a-1Soil leachates were collected at two weekly intervalsover 12 months and analysed for volume, andconcentrations of major anions and cations. Increasesin soil solution NO3
- concentrations inresponse to N additions were observed after 4–9months at three sites, whilst one sandy soil with highC:N ratio failed to nitrify under any of thetreatments. Changes in NO3
- concentrationsin soil solution controlled soil solution cationconcentrations in the five nitrifying soils, withAl3+ being the dominant cation in the more acidsoils with low base saturation. The acidification responses ofthe soils to the (NH4
2SO4additions were primarily related to the ability of thesoils to nitrify the added NH4
+. pH and soiltexture seemed important in controllingNH4
+ leaching in response to the treatments,with two less acidic, clay/clay loam sites showingalmost total retention of added NH4
+, whilstnearly 75% of the added N was leached asNH4
+ at the acid sandy soils. The presenceof living roots significantly reduced soil solutionNO3
- and associated cation concentrations attwo of the six sites. The very different responses of the sixsoils to increased (NH4)2SO4deposition emphasise that the establishment of N critical loadsfor forest soils need to allow for differences in N storagecapacity and nitrification potential. 相似文献
4.
Carbon monoxide uptake kinetics in unamended and long-term nitrogen-amended temperate forest soils 总被引:4,自引:0,他引:4
The effect of nitrogen (N) additions on the dynamics of carbon monoxide consumption in temperate forest soils is poorly understood. We measured soil CO profiles, potential rates of CO consumption and uptake kinetics in temperate hardwood and pine control plots and plots amended with 50 and 150 kg N ha-1 year-1 for more than 15 years. Soil profiles of CO concentrations were above atmospheric levels in the high-N plots of both stands, suggesting that in these forest soils the balance between consumption and production may be shifted so that either production is increased or consumption decreased. Highest rates of CO consumption were measured in the organic horizon and decreased with soil depth. In the N-amended plots, CO consumption increased in all but one soil depth of the hardwood stand, but decreased in all soil depths of the pine stand. CO enzyme affinities increased with soil depth in the control plots. However, enzyme affinities in the most active soil depths (organic and 0-5 cm mineral) decreased in response to low levels of N in both stands. In the high-N plots, affinities dramatically-increased in the hardwood stand, but decreased in the organic horizon and increased slightly in the 0-5 cm mineral soil in the pine stand. These findings indicate that long-term N addition either by fertilization or deposition may alter the size, composition and/or physiology of the community of CO consumers so that their ability to act as a sink for atmospheric CO has changed. This change could have a substantial effect on the lifetime of greenhouse gases such as CH4 and therefore the future of Earth's climate. 相似文献
5.
The objective of the study was to elucidate the depth distribution and community composition of Archaea in a temperate acidic forest soil. Numbers of Archaea and Bacteria were measured in the upper 18 cm of the soil, and soil cores were sampled on two separate occasions using quantitative PCR targeting 16S rRNA genes. Maximum numbers of Archaea were 0.6-3.8 x 10(8) 16S rRNA genes per gram of dry soil. Numbers of Bacteria were generally higher, but Archaea always accounted for a high percentage of the total gene numbers (12-38%). The archaeal community structure was analysed by the construction of clone libraries and by terminal restriction length polymorphism (T-RFLP) using the same Archaea-specific primers. With the reverse primer labelled, T-RFLP analysis led to the detection of four T-RFs. Three had lengths of 83, 185 and 218 bp and corresponded to uncultured Crenarchaeota. One (447 bp) was assigned to Thermoplasmales. Labelling of the forward primer allowed further separation of the T-RF into Crenarchaeota Group I.1c and Group I.1b, and indicated that Crenarchaeota of the Group I.1c were the predominant 16S rRNA genotype (相似文献
6.
The effects of natural hydrological fluctuations on the nature and bioavailability of soil phosphorus (P) in relation to iron (Fe) and aluminum (Al) chemistry and root mass were studied along a flooded tropical forest gradient in Mapire river, Venezuela. Soil samples were collected following a complete natural hydroperiod: end of the dry season (May 2004), end of the rainy season (November 2004) and end of the subsequent dry season (May 2005), and from three zones subjected to different flooding intensities: MAX, MED and MIN zones inundated for 8, 5 and 2 months per year respectively. The results showed that flood induced the increase of resin-Pi in the MAX zone, but not in the MED and MIN zones. Flood in the soil of the MAX zone also induced the increase of the NaOH-Pi fraction, which removes inorganic P sorbed onto secondary Fe and Al minerals. Changes in this redox-sensitive P form can be considered indirect evidence that P in the MAX zone can be released from the dissolution of iron oxyhydroxide. This field study also showed that along the flooded forest gradient, fine root mass declined during the flood event. However, such decline was more pronounced in the MIN zone than in the MAX zone. In this zone fine root mass was higher than in the other zones. 相似文献
7.
Litter type and soil minerals control temperate forest soil carbon response to climate change 总被引:1,自引:0,他引:1
Temperate forest soil organic carbon (C) represents a significant pool of terrestrial C that may be released to the atmosphere as CO2 with predicted changes in climate. To address potential feedbacks between climate change and terrestrial C turnover, we quantified forest soil C response to litter type and temperature change as a function of soil parent material. We collected soils from three conifer forests dominated by ponderosa pine (PP; Pinus ponderosa Laws.); white fir [WF; Abies concolor (Gord. and Glend.) Lindl.]; and red fir (RF; Abies magnifica A. Murr.) from each of three parent materials, granite (GR), basalt (BS), and andesite (AN) in the Sierra Nevada of California. Field soils were incubated at their mean annual soil temperature (MAST), with addition of native 13C‐labeled litter to characterize soil C mineralization under native climate conditions. Further, we incubated WF soils at PP MAST with 13C‐labeled PP litter, and RF soils at WF MAST with 13C‐labeled WF litter to simulate a migration of MAST and litter type, and associated change in litter quality, up‐elevation in response to predicted climate warming. Results indicated that total CO2 and percent of CO2 derived from soil C varied significantly by parent material, following the pattern of GR>BS>AN. Regression analyses indicated interactive control of C mineralization by litter type and soil minerals. Soils with high short‐range‐order (SRO) mineral content exhibited little response to varying litter type, whereas PP litter enriched in acid‐soluble components promoted a substantial increase of extant soil C mineralization in soils of low SRO mineral content. Climate change conditions increased soil C mineralization greater than 200% in WF forest soils. In contrast, little to no change in soil C mineralization was noted for the RF forest soils, suggesting an ecosystem‐specific climate change response. The climate change response varied by parent material, where AN soils exhibited minimal change and GR and BS soils mineralized substantially greater soil C. This study corroborates the varied response in soil C mineralization by parent material and highlights how the soil mineral assemblage and litter type may interact to control conifer forest soil C response to climate change. 相似文献
8.
9.
Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest 总被引:11,自引:0,他引:11
The minirhizotron technique (MR) for in situ measurement of fine root dynamics offers the opportunity to obtain accurate and unbiased estimates of root production in perennial vegetation only if MR tubes do not affect the longevity of fine roots. Assuming fine root biomass is near steady-state, fine root production (g m–2 yr–1) can be estimated as the ratio of fine root biomass (g m–2) to median fine root longevity (yr). This study evaluates the critical question of whether MR access tubes affect the longevity of fine roots, by comparing fine root survivorship obtained using MR with those from a non-intrusive in situ screen method in the forest floor horizons of a northern hardwood forest in New Hampshire, USA. Fine root survivorship was measured in 380 root screens during 1993–1997 and in six horizontal minirhizotron tubes during 1996–1997. No statistically significant difference was found between estimates of survivorship of fine roots (<1 mm dia.) at this site from MR versus from in situ screens, suggesting that MR tubes do not substantially affect fine root longevity in the forest floor of this northern hardwood forest and providing greater confidence in measurements of fine root production using the MR technique. Furthermore, the methodology for estimating fine root production from MR longevity data was evaluated by comparison of fine root longevity and production estimates made using single vs. multiple root cohorts, and using root-number, root-length, and root-mass weighted methods. Our results indicate that fine root-length longevity estimates based on multiple root cohorts throughout the year can be used to approximate fine root biomass production. Using this method, we estimated fine root longevity and production in the forest floor at this site to be 314 days (or 0.86 yr) and 303 g m–2 yr–1, respectively. Fine root production in this northern hardwood forest is approximately equivalent to standing biomass and was previously underestimated by root in-growth cores. We conclude that the use of MR to estimate fine root longevity and production as outlined here may result in improved estimates of fine root production in perennial vegetation. 相似文献
10.
Pollination systems in the cool temperate mixed coniferous and broad-leaved forest zone of Yakushima Island 总被引:1,自引:1,他引:1
Takakazu Yumoto 《Ecological Research》1988,3(2):117-129
Animal pollination was observed in a cool temperate mixed coniferous and broadleaved forest, and in shrubby vegetation on
a mountain summit, on Yakushima Island (30.2°N, 130.3°E), to the south of Kyushu, Japan. In the mixed forest, two groups of
plants were recognized: exclusively canopy-flowering species, and understory-flowering species. All of the canopy-flowering
species had dish-shaped flowers or flowers without petals, were visited by opportunist insects, and most of them showed a
mass-flowering pattern. Each segregated its flowering time from those of the others. On the other hand, most of the understory-flowering
species had bell-or funnel-shaped flowers which were pollinated by birds or bumble bees, and showed an extended flowering
pattern. Their phenological flowering series (exceptCamellia japonica that was pollinated by birds), without a break, coincided very well with the active period of a bumble bee species,Bombus ardens. In the shrubby vegetation on the mountain summit, two types of species were recognized: one type also grew in the forest,
whereas the other type only grew in the shrubby vegetation. The former type of species in this vegetation was visited by a
more diverse range of insects than that in the forest. In particular, species visited mainly by bumble bees in the forest
attracted many opportunist insects. All but one of the species that only grew in the shrubby vegetation were visited only
by opportunist insects and never by bumble bees. 相似文献
11.
12.
* It is commonly hypothesized that stand-level fine root biomass increases as soil fertility decreases both within and among tropical forests, but few data exist to test this prediction across broad geographic scales. This study investigated the relationships among fine roots, arbuscular mycorrhizal (AM) fungi and soil nutrients in four lowland, neotropical rainforests. * Within each forest, samples were collected from plots that differed in fertility and above-ground biomass, and fine roots, AM hyphae and total soil nutrients were measured. * Among sites, total fine root mass varied by a factor of three, from 237+/-19 g m-2 in Costa Rica to 800+/-116 g m-2 in Brazil (0-40 cm depth). Both root mass and length were negatively correlated to soil nitrogen and phosphorus, but AM hyphae were not related to nutrients, root properties or above-ground biomass. * These results suggest that understanding how soil fertility affects fine roots is an additional factor that may improve the representation of root functions in global biogeochemical models or biome-wide averages of root properties in tropical forests. 相似文献
13.
Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest 总被引:23,自引:0,他引:23
PETER HÖGBERG HOUBAO FAN † MAUD QUIST ‡ DAN BINKLEY§ CARL OLOF TAMM¶ 《Global Change Biology》2006,12(3):489-499
Relations among nitrogen load, soil acidification and forest growth have been evaluated based on short‐term (<15 years) experiments, or on surveys across gradients of N deposition that may also include variations in edaphic conditions and other pollutants, which confound the interpretation of effects of N per se. We report effects on trees and soils in a uniquely long‐term (30 years) experiment with annual N loading on an un‐polluted boreal forest. Ammonium nitrate was added to replicated (N=3) 0.09 ha plots at two doses, N1 and N2, 34 and 68 kg N ha?1 yr?1, respectively. A third treatment, N3, 108 kg N ha?1 yr?1, was terminated after 20 years, allowing assessment of recovery during 10 years. Tree growth initially responded positively to all N treatments, but the longer term response was highly rate dependent with no gain in N3, a gain of 50 m3 ha?1 stemwood in N2 and a gain of 100 m3 ha?1 stemwood in excess of the control (N0) in N1. High N treatments caused losses of up to 70% of exchangeable base cations (Ca2+, Mg2+, K+) in the mineral soil, along with decreases in pH and increases in exchangeable Al3+. In contrast, the organic mor‐layer (forest floor) in the N‐treated plots had similar amounts per hectare of exchangeable base cations as in the N0 treatment. Magnesium was even higher in the mor of N‐treated plots, providing evidence of up‐lift by the trees from the mineral soil. Tree growth did not correlate with the soil Ca/Al ratio (a suggested predictor of effects of soil acidity on tree growth). A boron deficiency occurred on N‐treated plots, but was corrected at an early stage. Extractable NH4+ and NO3?were high in mor and mineral soils of on‐going N treatments, while NH4+ was elevated in the mor only in N3 plots. Ten years after termination of N addition in the N3 treatment, the pH had increased significantly in the mineral soil; there were also tendencies of higher soil base status and concentrations of base cations in the foliage. Our data suggest the recovery of soil chemical properties, notably pH, may be quicker after removal of the N‐load than predicted. Our long‐term experiment demonstrated the fundamental importance of the rate of N application relative to the total amount of N applied, in particular with regard to tree growth and C sequestration. Hence, experiments adding high doses of N over short periods do not mimic the long‐term effects of N deposition at lower rates. 相似文献
14.
Summary Formation of ammonium during the reduction of nitrate under moderate and strict anaerobic incubation of two topsoils of a temperate forest catena, an acid mull and an anmoor was studied. In mull, both conditions of incubation caused reduction of nitrate and release of ammonium. The accumulation of ammonium continued even when there was no nitrate left hence indicating the formation of ammonium apparently through desamination of organic matter. Whereas, in anmoor neither any such formation of ammonium nor any significant reduction of nitrate was observed in the case of moderate anaerobic incubation. But under strict anaerobic incubation, progressive disappearance of nitrate was encountered from the beginning up to 30 days and this was accompanied by an increasing accumulation of ammonium in this soil. Yet this accumulation stopped when there was no nitrate left. Thus, the formation of ammonium is caused by the reduction of nitrate in anmoor. 相似文献
15.
Robert L. Sanford Jr. 《Oecologia》1990,83(4):541-545
Summary Belowground processes in light gap openings are poorly understood, particularly in tropical forests. Fine roots in three zones of light gap openings and adjacent intact forest were regularly measured in buried bags and surface litter envelopes for 2 years. Fine root biomass does not vary significantly within gaps for either buried bags or for surface litter envelopes. When entire gaps are compared without regard for within gap zones, root growth into both surface litter and buried bags is significantly different between gaps, with highest rates of fine root biomass accumulation in the smallest gap. These results suggest that the aboveground within-gap zones do not result in a congruent pattern of below-ground zonation. Gap size, decomposition of the fallen tree, and pre-gap fine root growth rates should be considered to determine fine root growth patterns following the formation of light gap openings. 相似文献
16.
以长白山阔叶红松混交林为研究对象,于2006—2008年原位模拟不同形态氮((NH4)2SO4、NH4Cl和KNO3)沉降水平(22.5和45kgN·hm-2·a-1),利用树脂芯法技术(resin-core incubation technique)测定了表层(有机层0~7cm)和土层(0~15cm)土壤氮素净矿化、净氨化和净硝化通量的季节和年际变化规律。同时,结合前人报道的有关林地碳、氮过程及其环境变化影响的结果,力求有效预估森林生态系统中氮素年矿化通量对大气氮沉降量和水热条件等因子变化的响应。结果表明,长白山阔叶红松林地土壤氮素年净矿化通量为1.2~19.8kgN·hm-2·a-1,2008年不同深度的土壤氮素年净矿化通量均显著高于2006和2007年(P<0.05)。随着模拟氮沉降量增加,土壤氮素净矿化通量也随之增加,尤其外源NH4+-N输入对净矿化通量的促进作用更为明显(P<0.05),但随着施肥年限的延长,这种促进作用逐渐减弱。与林地0~15cm土壤相比,氮沉降增加对0~7cm有机层氮素净氨化和净矿化通量的促进作用更为明显,尤其NH4Cl处理的促进作用更大。结合前人报道的野外原位观测结果,土壤氮素年净矿化通量随氮素沉降量的增加而增大,氮沉降量对不同区域森林土壤氮素净矿化通量的贡献率约为52%;氮沉降量(x1)和pH值(x2)可以解释区域森林土壤氮素年净矿化通量(y)变化的70%(y=0.54x1-18.38x2-109.55,R2=0.70,P<0.0001)。前人研究结果仅提供区域年均温度,未考虑积温的影响,这可能是造成年净矿化通量与温度无关的原因。今后的研究工作应该加强区域森林土壤积温观测,进而更加准确地预估森林土壤氮素的年净矿化通量。 相似文献
17.
The importance of heterotrophic nitrification was studied in soil from a mixed-conifer forest. Three sites in the forest were sampled: a clear cut area, a young stand and a mature stand. In the mature stand, the mineral soil (0–10 cm) and the organic layer were sampled separately. Gross rates of N mineralization and nitrification were measured by15NH
4
+
and15NO
3
–
isotopic pool dilution, respectively. The rates of autotrophic and heterotrophic nitrification were distinguished by use of acetylene as a specific inhibitor of autotrophic nitrification. In samples supplemented with15NH
4
+
and treated with acetylene, no15NO
3
–
was detectable showing that the acetylene treatment effectively blocked the autotrophic nitrification, and that NH
4
+
was not a substrate for heterotrophic nitrification. In the clear cut area, autotrophic nitrification was the most important NO
3
–
generating process with total nitrification (45 ug N kg–1h–1) accounting for about one-third of gross N mineralization (140 ug N kg–1 h–1). In the young and mature forested sites, gross nitrification rates were largely unaffected by acetylene treatment indicating that heterotrophic nitrification dominated the NO
3
–
generating process in these areas. In the mature forest mineral and organic soil, nitrification (heterotrophic) was equal to only about 5% of gross mineralization (gross mineralization rates of 90 ug N kg–1 h–1 mineral; 550 ug N kg–1 h–1 organic). The gross nitrification rate decreased from the clear cut area to the young forest area to the mineral soil of the mature forest (45; 17; 4.5 ug kg–1 h–1 respectively). The15N isotope pool dilution method, combined with acetylene as an inhibitor of autotrophic nitrification provided an effective technique for assessing the importance of heterotrophic nitrification in the N-cycle of this mixed-conifer ecosystem. 相似文献
18.
Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France 总被引:3,自引:0,他引:3
Soil samples from forest and agricultural sites in three areas of southwest France were collected to determine the effect
of forest conversion to continuous intensive corn cropping with no organic matter management on soil organic carbon (C) content.
Soils were humic loamy soils and site characteristics that may affect soil C were as uniform as possible (slope, elevation,
texture, soil type, vegetation).
Three areas were selected, with adjacent sites of various ages of cultivation (3 to 35 yr), and paired control forest sites.
The ploughed horizon (0-Dt cm) and the Dt-50 cm layer were collected at each agricultural site. In forest sites, each 10 cm
layer was collected systematically down to 1 meter depth. Carbon concentrations were converted to total content to a given
depth as the product of concentration, depth of sample and bulk density, and expressed in units of kg m-2. For each site and each sampled layer, the mineral mass of soil was calculated, in order to base comparisons on the same
soil mass rather than the same depth.
The pattern of C accumulation in forest soils showed an exponential decrease with depth. Results suggested that soil organic
carbon declined rapidly during the first years of cultivation, and at a slower rate thereafter. This pattern of decrease can
be fitted by a bi-exponential model assuming that initial soil organic carbon can be separated into two parts, a very labile
pool reduced during the first rapid decline and more refractory fractions oxidizing at a slower rate. Sampling to shallow
depths (0-Dt cm) resulted in over-estimation of the rate of carbon release in proportion to the initial amount of C, and in
under-estimation of the total loss of C with age. The results for the 0–50 cm horizon indicated that losses of total carbon
average about 50% in these soils, ranging in initial carbon content from 19 to 32.5 kg m-2. Carbon release to the atmosphere averaged 0.8 kg m-2 yr-1 to 50 cm depth during the first 10 years of cultivation. The results demonstrate that temperate soils may also be an important
source of atmospheric carbon, when they are initially high in carbon content and then cultivated intensively with no organic
matter management. 相似文献
19.
The effects of smoke, heat, darkness and cold stratification on seed germination were examined for 40 species with various life history attributes. These species establish in early successional stages on a volcano and are distributed in cool temperate zones of northern Japan. Smoke decreased seed germination in 11 species and increased it in one species, Leucothoe grayana . Germination of Polygonum longisetum was enhanced by a combination of smoke and cold, and that of Aralia elata by smoke and heat. Heat increased germination for three species and decreased it for one. Cold stratification broke dormancy in seeds of 11 species. Continuous darkness decreased germination of 22 species and did not increase germination for any species, showing that approximately half of the species require light for maximum germination. Although most species are sun plants that establish in early stages of succession and/or in disturbed areas, smoke and heat do not enhance germination of these species after disturbance, even when the disturbance is fire. Germination of slender and/or large seeds tends to be decreased more by smoke, probably because of their larger surface area. Light is more important than smoke and heat for detection of disturbance and for seed germination in this region. However, despite the low fire frequency in the region, germination of a few species was increased by fire-derived stimuli. 相似文献
20.
Masanori J. Toda 《Ecological Research》1992,7(3):283-295
Three-dimensional dispersion of drosophilid flies was studied within a secondary broad-leaved forest in relation to forest
structure. The survey area included the forest margin and old canopy gaps and varied in the foliage height profile from place
to place. Using multivariate analyses on the data of drosophilid dispersion, five microhabitats which were different from
one another for drosophilids were recognized: (i) canopy layer; (ii) middle layer; (iii) floor layer of forest interior; (iv)
upper layer of forest margin; and (v) herbaceous layer of forest margin and gap. The height of living space of canopy species
was remarkably lowered at the forest margin. The forest edge was richer in both numbers of individuals and species than the
forest interior from the overlap of the grassland and the forest canopy subcommunities and the addition of invaders from other
habitats. However, no ‘edge’ species, which were mostly restricted to or spend most of their time in ecotones, were found.
It is hypothesized that the above-ground forest structure consists fundamentally of three zones: (i) the canopy; (ii) the
floor; and (iii) the edge. A significant positive correlation was found between the foliage height diversity and the degree
of vertical habitat segregation among drosophilid species. The patchiness of vegetation structure influential to the three-dimensional
dispersion in a forest drosophilid community was estimated to be on the scale of 110–450 m2. This scale of subjective habitat patchiness or ‘ecological neighbourhood’ corresponds well with the most prevalent size
of canopy gaps occurring in various forests. 相似文献