首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Pharmacogenomics is the study of the role of inheritance in variation in the drug response phenotype—a phenotype that can vary from adverse drug reactions at one end of the spectrum to lack of therapeutic efficacy at the other.2. The thiopurine S-methyltransferase (TPMT) genetic polymorphism represents one of the best characterized and most clinically relevant examples of pharmacogenomics. This polymorphism has also served as a valuable “model system” for studies of the ways in which variation in DNA sequence might influence function.3. The discovery and characterization of the TPMT polymorphism grew directly out of pharmacogenomic studies of catechol O-methyltransferase (COMT), an enzyme discovered by Julius (Julie) Axelrod and his coworkers.4. This review will outline the process by which common, functionally significant genetic polymorphisms for both COMT and TPMT were discovered and will use these two methyltransferase enzymes to illustrate general principles of pharmacogenomic research—both basic mechanistic and clinical translational research—principles that have been applied to a series of genes encoding methyltransferase enzymes.  相似文献   

2.
Methyl conjugation is an important pathway in drug metabolism. Activities of three human drug-metabolizing methyltransferase enzymes, catechol-O-methyltransferase (COMT) (EC 2.1.1.6), thiopurine methyltransferase ( TPMT ) (EC 2.1.1.67), and thiol methyltransferase (TMT) (EC 2.1.1.9), are controlled by inheritance. COMT activity in the red blood cell (RBC) is regulated by a single genetic locus with two alleles, COMTL for low activity and COMTH for high activity. Gene frequencies of these two alleles were approximately equal in a white population sample of Northern European origin. The genetically controlled level of COMT activity in the RBC reflects the level of enzyme activity in other tissues and is significantly correlated with individual variations in the methyl conjugation of catechol drugs such as L-dopa and methyldopa. TPMT catalyzes the S-methylation of thiopurines and thiopyrimidines . RBC TPMT activity is also controlled by a single genetic locus with two alleles, TPMTL for low and TPMTH for high activity. The gene frequencies of these two alleles were 0.06 and 0.94, respectively, in a white population sample. RBC TPMT activity reflects the level of enzyme activity in other cells and tissues such as the lymphocyte and kidney. TMT catalyzes the S-methylation of aliphatic sulfhydryl compounds such as the drugs captopril and D-penicillamine. The heritability of the level of RBC membrane TMT activity has been estimated on the basis of family studies to be approximately 0.98. Regulation of these three methyl-conjugating enzymes by inheritance raises the possibility that genetically determined methylator status may be one factor responsible for variations in drug metabolism in humans.  相似文献   

3.
Enzymes are critically important in the transportation, metabolism, and clearance of most therapeutic drugs used in clinical practice today. Many of these enzymes have significant genetic polymorphisms that affect the enzyme's rate kinetics. Regarding drug metabolism, specific polymorphisms to the cytochrome (CYP) P450 enzyme family are linked to phenotypes that describe reaction rates as "ultra", "intermediate", and "poor," as referenced to "extensive" metabolizers that are assigned to wildtype individuals. Activity scores is an alternate designation that provides more genotype-to-phenotype resolution. Understanding the relative change in enzyme activities or rate of clearance of specific drugs relative to an individual's genotypes is an important component in the interpretation of pharmacogenomic data for personalized medicine. Currently, the most relevant drug metabolizing enzymes are CYP 2D6, CYP 2C9, CYP 2C19, thiopurine methyltransferase (TPMT) and UDP-glucuronosyltransferase (UGT). Each of these enzymes is reactive to a host of different drug substrates. Pharmacogenomic tests that are in routine clinical practice include CYP 2C19 for clopidogrel, TPMT for thiopurine drugs, and UDP-1A1 for irinotecan. Other tests where there is considerable data but have not been widely implemented includes CYP 2C9 for warfarin, CYP 2D6 for tamoxifen and codeine, and CYP 2C19 for the proton pump inhibitors.  相似文献   

4.
肿瘤化疗与药物代谢酶   总被引:3,自引:0,他引:3  
Xu F  Zhen YS  Shao RG 《生理科学进展》2005,36(4):295-298
药物代谢酶(DME)在药物代谢解毒和药物代谢活化中起着重要的作用,对组织器官的药物效应和毒性的易感性产生重要影响。DME在肿瘤组织和非肿瘤组织表达和活性存在差异。与常用化疗药物有关的药物代谢酶主要有细胞色素P450(CYP)、谷胱甘肽S-转移酶(GST)、尿苷二磷酸-葡萄糖醛酸转移酶(UGT)、巯嘌呤甲基转移酶(TPMT)和二氢嘧啶脱氢酶(DPD),这些酶均具有遗传多态性,在一定条件下可以被诱导,具有个体差异。  相似文献   

5.
Thiopurine methyltransferase (TPMT) is a cytosolic enzyme involved in the metabolism of thiopurine drugs. A genetic polymorphism is responsible for large inter-individual differences observed in TPMT activity. We report a new HPLC technique, which avoids an extraction step and the use of radioactive reagents, based on the conversion of 6-mercaptopurine (6-MP) to 6-methylmercaptopurine (6-MMP) using S-adenosyl-L-methionine (SAM) as methyl donor in red blood cell lysates (RBC). Intra- and inter-assay variation, within-day, within-run, between-day, and between-run variations showed high precision. The formation of 6-MMP was linear with respect to the lysate concentration and time. In a blinded assay of 61 samples, the results of HPLC method correlated with those of the radiochemical method (r2=0.82, P<0.0001). Using a cut-off point of 8.5 nmol/h/ml packed RBC, positive predictive value of HPLC was 100% for heterozygous patients. Because of the absence of extraction step, this new HPLC technique of TPMT activity determination reduces analysis variation and is time-saving. This rapid, sensitive, and reproducible method is suitable for routine monitoring of TPMT activity and for fundamental studies.  相似文献   

6.
Thiopurine methyltransferase (TPMT) is an important enzyme in the metabolism of 6-mercaptopurine (6MP), which is used in the treatment of acute lymphoblastic leukemia (ALL). TPMT catalyzes the formation of methylthioinosine monophosphate (MetIMP), which is cytotoxic for cultured cell lines, and it plays a role in detoxification of 6MP. Population studies show a genetic polymorphism for TMPT with both high and low activity alleles. About 1 of 300 subjects is homozygous for the low activity. The function TPMT plays in detoxification or therapeutic efficacy of 6MP in vivo is not clear. In this article the genetic polymorphism of TPMT is reviewed and the contribution of TPMT to the cytotoxic action, or detoxification, of 6MP in children with ALL is discussed. Induction of TPMT activity has been described during the treatment for ALL. We performed a pilot study on the influence of high-dose 6MP infusions (1300 mg/m2 in 24 h) on TPMT activity of peripheral blood mononuclear cells (pMNC) of eleven patients with ALL. The TPMT activities were in, or, above the normal range. There was no statistically significant difference between the TPMT activities before and after the 6MP infusions. MetIMP levels in pMNC increased during successive courses. This might be explained by TPMT induction, but other explanations are plausible as well. Twenty five percent of the TPMT assays failed, because less than the necessary 5·106 pMNC could be isolated from the blood of leukopenic patients. Red blood cells can not be used for TPMT measurements, since transfusions are frequently required during the treatment with 6MP infusions. Therefore, the influence of high-dose 6MP infusions on TPMT activity can only be investigated further when a TMPT assay which requires less pMNC has been developed.  相似文献   

7.
Thiopurine methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathiopurine. Several mutations in the TPMT gene have been identified which correlate with a low activity phenotype. The molecular basis for the genetic polymorphism of TPMT has been established for European Caucasians, African-Americans, Southwest Asians and Chinese, but it remains to be elucidated in Japanese populations. The frequency of the four allelic variants of the TPMT gene, TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3C (A719G) were determined in Japanese samples (n=192) using polymerase chain reaction (PCR)-RFLP and allele-specific PCR-based assays. TPMT*3C was found in 0.8% of the samples (three heterozygotes). The TPMT*2, TPMT*3A and TPMT*3B alleles were not detected in any of the samples analyzed. This study provides the first analysis of TPMT mutant allele frequency in a sample of Japanese population and indicates that TPMT*3C is the most common allele in Japanese subjects.  相似文献   

8.
Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathiopurine. Variability in TPMT activity is mainly due to genetic polymorphism. The frequency of the four allelic variants of the TPMT gene, TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3C (A719G) were determined in an Iranian population from south of Iran (n = 500), using polymerase chain reaction (PCR)-RFLP and allele-specific PCR-based assays. Four hundred seventy four persons (94.8%) were homozygous for the wild type allele (TPMT*1/*1) and twenty five people were TPMT*1/*3C (5%). One patient was found to be heterozygous in terms TPMT*1 and *2 alleles with genotype of TPMT*1/*2 (0.2%). None of the participants had both defective alleles. The TPMT*3C and *2 were the only variant alleles observed in this population. The total frequency of variant alleles was 2.6% and the wild type allele frequency was 97.4%. The TPMT*3B and *3A alleles were not detected. Distributions of TPMT genotype and allele frequency in Iranian populations are different from the genetic profile found among Caucasian or Asian populations. Our findings also revealed inter-ethnic differences in TPMT frequencies between different parts of Iran. This view may help clinicians to choose an appropriate strategy for thiopurine drugs and reduce adverse drug reactions such as bone marrow suppression.  相似文献   

9.
The level of expression of the enzyme thiopurine methyltransferase (TPMT) is an important determinant of the metabolism of drugs used both in the treatment of acute leukaemia (6-mercaptopurine and 6-thioguanine) and as an immunosuppressant in patients with autoimmune diseases or following organ transplantation (azathioprine). Studies of enzyme activity in red blood cells have shown that TPMT expression displays genetic polymorphism with 11% of individuals having intermediate and one in 300 undetectable levels. Patients with biallelic mutations and undetectable enzyme activity suffer life-threatening myelosuppression when treated with conventional doses of these drugs. Patients with intermediate activity have an increased risk of drug-associated toxicity. In the Caucasian populations studied to date, intermediate activity is associated with mutations at two sites of the TPMT gene, G460A and A719G (designated TPMT*3A), in 80% of cases. Detection of these mutations has, to date, been based on the analysis of restriction digests of PCR products. In order to simplify this process we have investigated the ability of denaturing high pressure liquid chromatography (DHPLC) to detect the A719G mutation. DHPLC of PCR products from 15 known heterozygotes (TPMT*3A/TPMT*1) and 18 known homozygotes (TPMT*1/TPMT*1) gave a clear pattern difference between the groups and 100% concordance with the results of restriction digests. These results suggest DHPLC represents a valuable technique for accurate and rapid detection of pharmacologically important mutations in the TPMT gene.  相似文献   

10.
Acute lymphoblastic leukaemia (ALL) is the most common malignancy of childhood. Although current treatment results in long term survival in over 70% of cases there is evidence that as many as 50% could have been cured using a less complex regimen with a lower incidence of long term side effects. In previous studies it has been found that thiopurines given as part of continuing therapy are key agents in preventing relapse. However, optimal administration during continuing therapy is often not achieved. Variation in the level of thiopurine methyltransferase (TPMT) activity appears to be a major molecular determinant of the extent of thiopurine metabolism. TPMT activity shows a trimodal distribution pattern. A lack of activity is found in approximately one in 300 Caucasians; approximately 11% have intermediate activity and the remaining 89% high activity. Congenital loss of activity is associated with grossly elevated levels of active drug and profound myelosuppression on exposure to thiopurines. This loss of activity has been attributed to single nucleotide polymorphisms (SNPs) within the TPMT gene. The frequency of SNPs is related to ethnicity, with the most common in Caucasians being TPMT*3A which is characterized by a G to A transition at position 460 with a substitution of alanine for tyrosine at amino acid 154 (A154Y) and a transition of A to G at nucleotide 719 resulting in a change of tyrosine to cysteine at position 240 (Y240C). Polymorphisms have also been identified within the 5′ flanking promoter region of the TPMT gene due to a variable number of tandem repeats (VNTR*3–*8). An overview of the polymorphisms identified to date, their implication on the metabolism of the thiopurine drugs and therapeutic importance will be discussed.  相似文献   

11.
Acute lymphoblastic leukaemia (ALL) is the most common malignancy of childhood. Although current treatment results in long term survival in over 70% of cases there is evidence that as many as 50% could have been cured using a less complex regimen with a lower incidence of long term side effects. In previous studies it has been found that thiopurines given as part of continuing therapy are key agents in preventing relapse. However, optimal administration during continuing therapy is often not achieved. Variation in the level of thiopurine methyltransferase (TPMT) activity appears to be a major molecular determinant of the extent of thiopurine metabolism. TPMT activity shows a trimodal distribution pattern. A lack of activity is found in approximately one in 300 Caucasians; approximately 11% have intermediate activity and the remaining 89% high activity. Congenital loss of activity is associated with grossly elevated levels of active drug and profound myelosuppression on exposure to thiopurines. This loss of activity has been attributed to single nucleotide polymorphisms (SNPs) within the TPMT gene. The frequency of SNPs is related to ethnicity, with the most common in Caucasians being TPMT*3A which is characterized by a G to A transition at position 460 with a substitution of alanine for tyrosine at amino acid 154 (A154Y) and a transition of A to G at nucleotide 719 resulting in a change of tyrosine to cysteine at position 240 (Y240C). Polymorphisms have also been identified within the 5' flanking promoter region of the TPMT gene due to a variable number of tandem repeats (VNTR*3-*8). An overview of the polymorphisms identified to date, their implication on the metabolism of the thiopurine drugs and therapeutic importance will be discussed.  相似文献   

12.
Thiopurine S-methyltransferase (TPMT) metabolizes cytotoxic thiopurine drugs used in the treatment of leukemia and inflammatory bowel disease. TPMT is a major pharmacogenomic target with 23 alleles identified to date. Several of these alleles cause rapid protein degradation and/or aggregation, making it extremely difficult to study the structural impact of the TPMT polymorphisms experimentally. We, therefore, have performed multiple molecular dynamics simulations of the four most common alleles [TPMT*2 (A80P), *3A (A154T/Y240C), *3B (A154T) and *3C (Y240C)] to investigate the molecular mechanism of TPMT inactivation at an atomic level. The A80P polymorphism in TPMT*2 disrupts helix α3 bordering the active site, which breaks several salt-bridge interactions and opens up a large cleft in the protein. The A154T polymorphism is located within the co-substrate binding site. The larger threonine alters the packing of substrate-binding residues (P68, L69, Y166), increasing the solvent exposure of the polymorphic site. This packing rearrangement may account for the complete lack of activity in the A154T mutant. The Y240C polymorphism is located in β-strand 9, distant from the active site. Side-chain contacts between residue 240 and helix α8 are lost in TPMT*3C. Residues 154 and 240 in TPMT*3A are connected through a hydrogen-bonding network. The dual polymorphisms result in a flattened, slightly distorted protein structure and an increase in the thiopurine-binding site solvent accessibility. The two variants that undergo the most rapid degradation in vivo, TPMT*2 and *3A, are also the most deformed in the simulations.  相似文献   

13.
Catechol-O-methyl transferase (COMT) catalyzes the first step in one of the major pathways in the degradation of catecholamines. The COMT gene on chromosome 22 has been considered a candidate gene for many neuropsychiatric disorders, in part because an exon 4 single nucleotide polymorphism (SNP) in COMT causes an amino acid substitution associated with significantly altered enzyme activity. This functional variant, detected as an NlaIII restriction site polymorphism (RSP), is polymorphic in populations from around the world. A four-site haplotype spanning 28 kb effectively encompasses COMT. This haplotype is comprised of two novel polymorphisms [a tetranucleotide short tandem repeat polymorphism (STRP) in intron 1 and a HindIII RSP at the 5' end of COMT], the NlaIII site, and another previously published site - a BglI RSP at the 3' end of the gene. Overall linkage disequilibrium (LD) for this haplotype is strong and significant in 32 population samples from around the world. Conditional probabilities indicate that, in spite of moderate to strong disequilibrium in most non-African populations, the NlaIII site, although often used for prediction, would not always be a reliable predictor of allelic variation at the other sites. Because other functional variation might exist, especially regulatory variation, these findings indicate that haplotypes would be more effective indicators of possible involvement of COMT in disease etiology.  相似文献   

14.
There is great variation in drug-response phenotypes, and a “one size fits all” paradigm for drug delivery is flawed. Pharmacogenomics is the study of how human genetic information impacts drug response, and it aims to improve efficacy and reduced side effects. In this article, we provide an overview of pharmacogenetics, including pharmacokinetics (PK), pharmacodynamics (PD), gene and pathway interactions, and off-target effects. We describe methods for discovering genetic factors in drug response, including genome-wide association studies (GWAS), expression analysis, and other methods such as chemoinformatics and natural language processing (NLP). We cover the practical applications of pharmacogenomics both in the pharmaceutical industry and in a clinical setting. In drug discovery, pharmacogenomics can be used to aid lead identification, anticipate adverse events, and assist in drug repurposing efforts. Moreover, pharmacogenomic discoveries show promise as important elements of physician decision support. Finally, we consider the ethical, regulatory, and reimbursement challenges that remain for the clinical implementation of pharmacogenomics.

What to Learn in This Chapter

  • Interactions between drugs (small molecules) and genes (proteins)
  • Methods for pharmacogenomic discovery
    • Association- and expression-based methods
    • Cheminformatics and pathway-based methods
  • Database resources for pharmacogenomic discovery and application (PharmGKB)
  • Applications of pharmacogenomics into a clinical setting
This article is part of the “Translational Bioinformatics” collection for PLOS Computational Biology.
  相似文献   

15.
16.
The aim of this study was to follow, during standardized initiation of thiopurine treatment, thiopurine methyltransferase (TPMT) gene expression and enzyme activity and thiopurine metabolite concentrations, and to study the role of TPMT and ITPA 94C > A polymorphisms for the development of adverse drug reactions. Sixty patients with ulcerative colitis or Crohn's disease were included in this open and prospective multi-center study. Thiopurine naïve patients were prescribed azathioprine (AZA), patients previously intolerant to AZA received 6-mercaptopurine (6-MP). The patients followed a predetermined dose escalation schedule, reaching target dose at Week 3; 2.5 and 1.25 mg/kg body weight for AZA and 6-MP, respectively. The patients were followed every week during Weeks 1–8 from baseline and then every 4 weeks until 20 weeks. TPMT activity and thiopurine metabolites were determined in erythrocytes, TPMT and ITPA genotypes, and TPMT gene expression were determined in whole blood. One homozygous TPMT-deficient patient was excluded. Five non compliant patients were withdrawn during the first weeks. Twenty-seven patients completed the study per protocol; 27 patients were withdrawn because of adverse events. Sixty-seven percent of the withdrawn patients tolerated thiopurines at a lower dose at Week 20. There was no difference in baseline TPMT enzyme activity between individuals completing the study and those withdrawn for adverse events (p = 0.45). A significant decrease in TPMT gene expression (TPMT/huCYC ratio, p = 0.02) was found, however TPMT enzyme activity did not change. TPMT heterozygous individuals had a lower probability of remaining in the study on the predetermined dose (p = 0.039). The ITPA 94C > A polymorphism was not predictive of adverse events (p = 0.35).  相似文献   

17.
The relevance of alternative RNA splicing to pharmacogenomics   总被引:10,自引:0,他引:10  
The importance of alternative RNA splicing in the generation of genetic diversity is now widely accepted. This article highlights how alternative RNA splicing can have an impact on drug efficacy and safety, and demonstrates its potential pharmacogenomic value. The analysis of the repertoire of alternative RNA splicing events could potentially identify markers of pharmacogenomic relevance with high sensitivity and specificity and also provides a route through which genes can be selected for single nucleotide polymorphism (SNP) genotyping. Recent methodological advances, including microarray and splice-dedicated expression profiling, have made it possible to perform high-throughput alternative splicing analyses.  相似文献   

18.
The aim of this study was to follow, during standardized initiation of thiopurine treatment, thiopurine methyltransferase (TPMT) gene expression and enzyme activity and thiopurine metabolite concentrations, and to study the role of TPMT and ITPA 94C > A polymorphisms for the development of adverse drug reactions. Sixty patients with ulcerative colitis or Crohn's disease were included in this open and prospective multi-center study. Thiopurine na?ve patients were prescribed azathioprine (AZA), patients previously intolerant to AZA received 6-mercaptopurine (6-MP). The patients followed a predetermined dose escalation schedule, reaching target dose at Week 3; 2.5 and 1.25 mg/kg body weight for AZA and 6-MP, respectively. The patients were followed every week during Weeks 1-8 from baseline and then every 4 weeks until 20 weeks. TPMT activity and thiopurine metabolites were determined in erythrocytes, TPMT and ITPA genotypes, and TPMT gene expression were determined in whole blood. One homozygous TPMT-deficient patient was excluded. Five non compliant patients were withdrawn during the first weeks. Twenty-seven patients completed the study per protocol; 27 patients were withdrawn because of adverse events. Sixty-seven percent of the withdrawn patients tolerated thiopurines at a lower dose at Week 20. There was no difference in baseline TPMT enzyme activity between individuals completing the study and those withdrawn for adverse events (p = 0.45). A significant decrease in TPMT gene expression (TPMT/huCYC ratio, p = 0.02) was found, however TPMT enzyme activity did not change. TPMT heterozygous individuals had a lower probability of remaining in the study on the predetermined dose (p = 0.039). The ITPA 94C > A polymorphism was not predictive of adverse events (p = 0.35).  相似文献   

19.
The definition of the most appropriate strategy to demonstrate causation of a given genetic-molecular mechanism in a complex multifactorial polygenic disease like hypertension is hampered by the underestimation of the complexity arising from the genetic and environmental interactions. To disentangle this complexity, we developed a strategy based on six steps: 1) isolation of a rodent model of hypertension (Milan hypertensive strain and Milan normotensive strain) that shares some pathophysiological abnormalities with human primary hypertension; 2) definition in the model of the sequence of events linking these abnormalities to a genetic molecular mechanism; 3) determination of the polymorphism of the three adducin genes discovered in the model both in rats and in humans; 4) comparison at biochemical and physiological levels between the rodent models and the hypertensive carriers of the "mutated" gene variants; 5) evaluation of the impact of the adducin genes in hypertension and its organ complications with association and linkage studies in humans, also considering the genetic and environmental interactions; and 6) development of a pharmacogenomic approach aimed at establishing the therapeutic benefit of a drug interfering with the sequence of events triggered by adducin and their effect's size. The bulk of data obtained demonstrates the importance of a multidisciplinary approach considering a variety of genetic and environmental interactions. Adducin functions within the cells as a heterodimer composed of a combination of three subunits. Each of these subunits is coded by genes mapping to different chromosomes. Therefore, the interaction among these genes, taken together with the interactions with other modulatory genes or with the environment, is indispensable to establish the adducin clinical impact. The hypothesis that adducin polymorphism favors the development of hypertension via an increased tubular sodium reabsorption is well supported by a series of consistent experimental and clinical data. Many mechanistic aspects, underlying the link between these genes and clinical symptoms, need to be clarified. The clinical effect size of adducin must be established also with the contribution of pharmacogenomics with a drug that selectively interferes with the sequence of events triggered by the mutated adducin.  相似文献   

20.

Background

“Imaging genetics” studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT) and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS).

Methodology/Principal Findings

Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals) matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls.

Conclusions/Significance

These data suggest that the prefrontal NIRS signals can noninvasively detect the impact of COMT variation in patients with schizophrenia. NIRS may be a promising candidate translational approach in psychiatric neuroimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号