共查询到9条相似文献,搜索用时 5 毫秒
1.
Xueling Yi Deahn M. Donner Paula E. Marquardt Jonathan M. Palmer Michelle A. Jusino Jacqueline Frair Daniel L. Lindner Emily K. Latch 《Ecology and evolution》2020,10(18):10031-10043
White‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti‐Pd immune responses, indicating pathogen‐mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre‐ (Wisconsin) and post‐ (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014–2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1–5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre‐ and post‐WNS populations, indicating no signal of selection on MHC genes. However, post‐WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions. 相似文献
2.
Catherine Johnson Donald J. Brown Chris Sanders Craig W. Stihler 《Ecology and evolution》2021,11(18):12453
White‐nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long‐term monitoring data to examine WNS‐related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist‐net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population‐level response to WNS, we investigated post‐WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long‐eared bat), and Perimyotis subflavus (tri‐colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long‐term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS‐affected bat populations. 相似文献
3.
4.
Identifying unusual mortality events in bats: a baseline for bat hibernation monitoring and white‐nose syndrome research 下载免费PDF全文
Bat population trends are particularly affected by adult mortality, especially when large numbers of individuals die, as evidenced by white‐nose syndrome in North America. We obtained baseline mortality data from 318 European hibernacula. Mortality was low and negatively associated with elevation but not with fungal infestation. Mortality events involving more than seven bats at a hibernaculum should be considered unusual, and above this threshold, pathological or microbiological analysis should be carried out. To increase understanding of mortality in bats, there is an urgent need to develop and co‐ordinate national and international programs for monitoring and investigating mortality and diseases. 相似文献
5.
Population genetic structure of a common host predicts the spread of white‐nose syndrome,an emerging infectious disease in bats 下载免费PDF全文
Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White‐nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis. 相似文献
6.
7.
Ryan W. McEwan Todd F. Hutchinson Robert P. Long D. Robert Ford Brian C. McCarthy 《植被学杂志》2007,18(5):655-664
Question: What was the role of fire during the establishment of the current overstory (ca. 1870–1940) in mixed‐oak forests of eastern North America? Location: Nine sites representing a 240‐km latitudinal gradient on the Allegheny and Cumberland Plateaus of eastern North America. Methods: Basal cross‐sections were collected from 225 trees. Samples were surfaced, and fire scars were dated. Fire history diagrams were constructed and fire return intervals were calculated for each site. Geographic patterns of fire occurrence, and fire‐climate relationships were assessed. Results: Fire was a frequent and widespread occurrence during the formation of mixed‐oak forests, which initiated after large‐scale land clearing in the region ca. 1870. Fire return ranged from 1.7 to 11.1 years during a period of frequent burning from 1875 to 1936. Fires were widespread during this period, sometimes occurring across the study region in the same year. Fires occurred in a variety of climate conditions, including both drought and non‐drought years. Fires were rare from 1936 to the present. Conclusions: A variety of fire regime characteristics were discerned. First, a period of frequent fire lasted approximately 60 years during the establishment of the current oak overstory. Second, fire occurred during a variety of climate conditions, including wet climates and extreme drought. Finally, there was within‐site temporal variability in fire occurrence. These reference conditions could be mimicked in ongoing oak restoration activities, improving the likelihood of restoration success. 相似文献
8.
Parasitoids and predatory flies were sampled in the wheat production region of the west-central Great Plains (southeastern Wyoming, western Nebraska, and north-central Colorado) of North America using plant material infested with the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae). Samples were taken April through October in 2001 and 2002, which was 15–16 years after first detection of D. noxia and 5–6 years after the last release of natural enemies for its control in this region. The natural enemies detected were (in order of high to low detection frequencies across three states and 2 years): Aphelinus albipodus Hayat and Fatima (Hymenoptera: Aphelinidae), Eupeodes volucris Osten Sacken (Diptera: Syrphidae), Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae, Aphidiinae), Leucopis gaimarii Tanasijtshuk (Diptera: Chamaemyiidae), Aphidius avenaphis (Fitch), Aphidius matricariae Haliday, Diaeretiella rapae (MIntosh), Aphidius ervi Haliday, Praon yakimanum Pike and Starý (Hymenoptera: Braconidae, Aphidiinae), and Aphelinus asychis Walker (Hymenoptera: Aphelinidae). The results confirmed establishment of one of the 10 exotic parasitoid species released for D. noxia control (A. albipodus) in the west-central Great Plains. It is unknown whether detection of A. asychis, A. matricariae, and D. rapae can be attributed to exotic introductions or preexisting populations. Other species detected in this study have been previously documented from the western US, although the recognized distributions have expanded for A. avenaphis, L. gaimarii, and P. yakimanum compared to the first few years after initial detection of D. noxia. Thus, there is definitive establishment of one exotic introduced for D. noxia and considerable range expansion of preexisting species that prey upon D. noxia. 相似文献