共查询到20条相似文献,搜索用时 15 毫秒
1.
Carolina S. Carvalho Brenna R. Forester Simone K. Mitre Ronnie Alves Vera L. Imperatriz‐Fonseca Silvio J. Ramos Luciana C. Resende‐Moreira Jos O. Siqueira Leonardo C. Trevelin Cecilio F. Caldeira Markus Gastauer Rodolfo Jaff 《Molecular ecology resources》2021,21(1):44-58
Despite the importance of climate‐adjusted provenancing to mitigate the effects of environmental change, climatic considerations alone are insufficient when restoring highly degraded sites. Here we propose a comprehensive landscape genomic approach to assist the restoration of moderately disturbed and highly degraded sites. To illustrate it we employ genomic data sets comprising thousands of single nucleotide polymorphisms from two plant species suitable for the restoration of iron‐rich Amazonian Savannas. We first use a subset of neutral loci to assess genetic structure and determine the genetic neighbourhood size. We then identify genotype‐phenotype‐environment associations, map adaptive genetic variation, and predict adaptive genotypes for restoration sites. Whereas local provenances were found optimal to restore a moderately disturbed site, a mixture of genotypes seemed the most promising strategy to recover a highly degraded mining site. We discuss how our results can help define site‐adjusted provenancing strategies, and argue that our methods can be more broadly applied to assist other restoration initiatives. 相似文献
2.
Collin W. Ahrens Paul D. Rymer Adam Stow Jason Bragg Shannon Dillon Kate D. L. Umbers Rachael Y. Dudaniec 《Molecular ecology》2018,27(6):1342-1356
Detecting genetic variants under selection using FST outlier analysis (OA) and environmental association analyses (EAAs) are popular approaches that provide insight into the genetic basis of local adaptation. Despite the frequent use of OA and EAA approaches and their increasing attractiveness for detecting signatures of selection, their application to field‐based empirical data have not been synthesized. Here, we review 66 empirical studies that use Single Nucleotide Polymorphisms (SNPs) in OA and EAA. We report trends and biases across biological systems, sequencing methods, approaches, parameters, environmental variables and their influence on detecting signatures of selection. We found striking variability in both the use and reporting of environmental data and statistical parameters. For example, linkage disequilibrium among SNPs and numbers of unique SNP associations identified with EAA were rarely reported. The proportion of putatively adaptive SNPs detected varied widely among studies, and decreased with the number of SNPs analysed. We found that genomic sampling effort had a greater impact than biological sampling effort on the proportion of identified SNPs under selection. OA identified a higher proportion of outliers when more individuals were sampled, but this was not the case for EAA. To facilitate repeatability, interpretation and synthesis of studies detecting selection, we recommend that future studies consistently report geographical coordinates, environmental data, model parameters, linkage disequilibrium, and measures of genetic structure. Identifying standards for how OA and EAA studies are designed and reported will aid future transparency and comparability of SNP‐based selection studies and help to progress landscape and evolutionary genomics. 相似文献
3.
Kelly Barr Christen M. Bossu Rachael A. Bay Eric C. Anderson Jim Belthoff Lynne A. Trulio Debra Chromczak Colleen L. Wisinski Thomas B. Smith Kristen C. Ruegg 《Evolutionary Applications》2023,16(12):1889-1900
Migration is driven by a combination of environmental and genetic factors, but many questions remain about those drivers. Potential interactions between genetic and environmental variants associated with different migratory phenotypes are rarely the focus of study. We pair low coverage whole genome resequencing with a de novo genome assembly to examine population structure, inbreeding, and the environmental factors associated with genetic differentiation between migratory and resident breeding phenotypes in a species of conservation concern, the western burrowing owl (Athene cunicularia hypugaea). Our analyses reveal a dichotomy in gene flow depending on whether the population is resident or migratory, with the former being genetically structured and the latter exhibiting no signs of structure. Among resident populations, we observed significantly higher genetic differentiation, significant isolation-by-distance, and significantly elevated inbreeding. Among migratory breeding groups, on the other hand, we observed lower genetic differentiation, no isolation-by-distance, and substantially lower inbreeding. Using genotype–environment association analysis, we find significant evidence for relationships between migratory phenotypes (i.e., migrant versus resident) and environmental variation associated with cold temperatures during the winter and barren, open habitats. In the regions of the genome most differentiated between migrants and residents, we find significant enrichment for genes associated with the metabolism of fats. This may be linked to the increased pressure on migrants to process and store fats more efficiently in preparation for and during migration. Our results provide a significant contribution toward understanding the evolution of migratory behavior and vital insight into ongoing conservation and management efforts for the western burrowing owl. 相似文献
4.
Global climate is rapidly changing, and the ability for tree species to adapt is dependent on standing genomic variation; however, the distribution and abundance of functional and adaptive variants are poorly understood in natural systems. We test key hypotheses regarding the genetics of adaptive variation in a foundation tree: genomic variation is associated with climate, and genomic variation is more likely to be associated with temperature than precipitation or aridity. To test these hypotheses, we used 9,593 independent, genomic single‐nucleotide polymorphisms (SNPs) from 270 individuals sampled from Corymbia calophylla's entire distribution in south‐western Western Australia, spanning orthogonal temperature and precipitation gradients. Environmental association analyses returned 537 unique SNPs putatively adaptive to climate. We identified SNPs associated with climatic variation (i.e., temperature [458], precipitation [75] and aridity [78]) across the landscape. Of these, 78 SNPs were nonsynonymous (NS), while 26 SNPs were found within gene regulatory regions. The NS and regulatory candidate SNPs associated with temperature explained more deviance (27.35%) than precipitation (5.93%) and aridity (4.77%), suggesting that temperature provides stronger adaptive signals than precipitation. Genes associated with adaptive variants include functions important in stress responses to temperature and precipitation. Patterns of allelic turnover of NS and regulatory SNPs show small patterns of change through climate space with the exception of an aldehyde dehydrogenase gene variant with 80% allelic turnover with temperature. Together, these findings provide evidence for the presence of adaptive variation to climate in a foundation species and provide critical information to guide adaptive management practices. 相似文献
5.
Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long‐standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White‐breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE – disentangled from IBD – in sky island vertebrates and identify potential adaptive genetic variation. 相似文献
6.
Hans A. Vasquez‐Gross John J. Yu Ben Figueroa Damian D. G. Gessler David B. Neale Jill L. Wegrzyn 《Molecular ecology resources》2013,13(3):528-537
Today, researchers spend a tremendous amount of time gathering, formatting, filtering and visualizing data collected from disparate sources. Under the umbrella of forest tree biology, we seek to provide a platform and leverage modern technologies to connect biotic and abiotic data. Our goal is to provide an integrated web‐based workspace that connects environmental, genomic and phenotypic data via geo‐referenced coordinates. Here, we connect the genomic query web‐based workspace, DiversiTree and a novel geographical interface called CartograTree to data housed on the TreeGenes database. To accomplish this goal, we implemented Simple Semantic Web Architecture and Protocol to enable the primary genomics database, TreeGenes, to communicate with semantic web services regardless of platform or back‐end technologies. The novelty of CartograTree lies in the interactive workspace that allows for geographical visualization and engagement of high performance computing (HPC) resources. The application provides a unique tool set to facilitate research on the ecology, physiology and evolution of forest tree species. CartograTree can be accessed at: http://dendrome.ucdavis.edu/cartogratree . 相似文献
7.
Hersch-Green EI Turley NE Johnson MT 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1569):1453-1460
Research in community genetics seeks to understand how the dynamic interplay between ecology and evolution shapes simple and complex communities and ecosystems. A community genetics perspective, however, may not be necessary or informative for all studies and systems. To better understand when and how intraspecific genetic variation and microevolution are important in community and ecosystem ecology, we suggest future research should focus on three areas: (i) determining the relative importance of intraspecific genetic variation compared with other ecological factors in mediating community and ecosystem properties; (ii) understanding the importance of microevolution in shaping ecological dynamics in multi-trophic communities; and (iii) deciphering the phenotypic and associated genetic mechanisms that drive community and ecosystem processes. Here, we identify key areas of research that will increase our understanding of the ecology and evolution of complex communities but that are currently missing in community genetics. We then suggest experiments designed to meet these current gaps. 相似文献
8.
甘肃甘南藏族自治州生态环境现状与恢复对策 总被引:1,自引:0,他引:1
甘南藏族自治州生态环境状况,对于保障黄河、长江中下游地区生态安全具有重要作用。受多种因素影响,该地区生态环境受到严重破坏。在资料查阅、实地考察与访谈的基础上,阐述了甘南藏族自治州生态环境的现状,分析了产生这种现状的原因,最后提出了重建对策。 相似文献
9.
Ruth G. Shaw 《Evolution; international journal of organic evolution》2013,67(2):305-314
Organismal development and evolution are complex, multifaceted processes that depend intimately on context. They are subject to environmental influences, chance appearance and fixation of mutations, and numerous other idiosyncrasies. Genomics is detailing the molecular signature of effects of these mechanisms on phenotypes, but because numerous distinct evolutionary explanations can produce a given genomic pattern, the molecular details, rather than elucidating process, typically distract from explanatory insight and contribute little to predictive capability. While genomic research has burgeoned, direct study of evolutionary and developmental processes has lagged. We advocate for reinvigoration of direct study of process, along with refocusing of attention on questions of broad biological import, as more productive of urgently needed insights, which genomic approaches are not providing. 相似文献
10.
Rachael M. Giglio Tonie E. Rocke Jorge E. Osorio Emily K. Latch 《Evolutionary Applications》2021,14(4):1036-1051
Utah prairie dogs (Cynomys parvidens) are federally threatened due to eradication campaigns, habitat destruction, and outbreaks of plague. Today, Utah prairie dogs exist in small, isolated populations, making them less demographically stable and more susceptible to erosion of genetic variation by genetic drift. We characterized patterns of genetic structure at neutral and putatively adaptive loci in order to evaluate the relative effects of genetic drift and local adaptation on population divergence. We sampled individuals across the Utah prairie dog species range and generated 2955 single nucleotide polymorphisms using double digest restriction site-associated DNA sequencing. Genetic diversity was lower in low-elevation sites compared to high-elevation sites. Population divergence was high among sites and followed an isolation-by-distance model. Our results indicate that genetic drift plays a substantial role in the population divergence of the Utah prairie dog, and colonies would likely benefit from translocation of individuals between recovery units, which are characterized by distinct elevations, despite the detection of environmental associations with outlier loci. By understanding the processes that shape genetic structure, better informed decisions can be made with respect to the management of threatened species to ensure that adaptation is not stymied. 相似文献
11.
Understanding the consequences of exotic diseases on native forests is important to evolutionary ecology and conservation biology because exotic pathogens have drastically altered US eastern deciduous forests. Cornus florida L. (flowering dogwood tree) is one such species facing heavy mortality. Characterizing the genetic structure of C. florida populations and identifying the genetic signature of adaptation to dogwood anthracnose (an exotic pathogen responsible for high mortality) remain vital for conservation efforts. By integrating genetic data from genotype by sequencing (GBS) of 289 trees across the host species range and distribution of disease, we evaluated the spatial patterns of genetic variation and population genetic structure of C. florida and compared the pattern to the distribution of dogwood anthracnose. Using genome‐wide association study and gradient forest analysis, we identified genetic loci under selection and associated with ecological and diseased regions. The results revealed signals of weak genetic differentiation of three or more subgroups nested within two clusters—explaining up to 2%–6% of genetic variation. The groups largely corresponded to the regions within and outside the eastern Hot‐Continental ecoregion, which also overlapped with areas within and outside the main distribution of dogwood anthracnose. The fungal sequences contained in the GBS data of sampled trees bolstered visual records of disease at sampled locations and were congruent with the reported range of Discula destructiva, suggesting that fungal sequences within‐host genomic data were informative for detecting or predicting disease. The genetic diversity between populations at diseased vs. disease‐free sites across the range of C. florida showed no significant difference. We identified 72 single‐nucleotide polymorphisms (SNPs) from 68 loci putatively under selection, some of which exhibited abrupt turnover in allele frequencies along the borders of the Hot‐Continental ecoregion and the range of dogwood anthracnose. One such candidate SNP was independently identified in two prior studies as a possible L‐type lectin‐domain containing receptor kinase. Although diseased and disease‐free areas do not significantly differ in genetic diversity, overall there are slight trends to indicate marginally smaller amounts of genetic diversity in disease‐affected areas. Our results were congruent with previous studies that were based on a limited number of genetic markers in revealing high genetic variation and weak population structure in C. florida. 相似文献
12.
As molecular ecologists, we have by necessity become adept at working across computational platforms. A diverse community of scientists has developed a broad array of analytical resources spanning command line to graphical user interface across Linux, Mac, and Windows environments and a dizzying array of program‐specific input formats. In light of this, we often explore our data like free divers – filling our lungs with air and descending for a short period of time into one part of our data set before resurfacing, reformatting, and preparing for our next analysis. In this issue of Molecular Ecology Resources, Meirmans (2020) presents an updated version of GenoDive, a program with a toolkit that provides users with the opportunity to stay a while and delve deeper into the diverse portfolio of information provided by a genomic data set. The comprehensive nature of GenoDive coupled with its unique capability to handle both diploid and polyploid data also provides an opportunity to reflect on the unevenness of resources available for the analysis of polyploid versus diploid data. Since new updates include the addition of plug‐ins for genotype‐environment association analyses, we limit the observations presented here to the common tools used for landscape genomics analyses. 相似文献
13.
Flavia Termignoni‐García Juan P. Jaramillo‐Correa Juan Chablé‐Santos Mark Liu Allison J. Shultz Scott V. Edwards Patricia Escalante‐Pliego 《Molecular ecology》2017,26(17):4483-4496
Identifying the genetic basis of phenotypic variation and its relationship with the environment is key to understanding how local adaptations evolve. Such patterns are especially interesting among populations distributed across habitat gradients, where genetic structure can be driven by isolation by distance (IBD) and/or isolation by environment (IBE). Here, we used variation in ~1,600 high‐quality SNPs derived from paired‐end sequencing of double‐digest restriction site‐associated DNA (ddRAD‐Seq) to test hypotheses related to IBD and IBE in the Yucatan jay (Cyanocorax yucatanicus), a tropical bird endemic to the Yucatán Peninsula. This peninsula is characterized by a precipitation and vegetation gradient—from dry to evergreen tropical forests—that is associated with morphological variation in this species. We found a moderate level of nucleotide diversity (π = .008) and little evidence for genetic differentiation among vegetation types. Analyses of neutral and putatively adaptive SNPs (identified by complementary genome‐scan approaches) indicate that IBD is the most reliable explanation to account for frequency distribution of the former, while IBE has to be invoked to explain those of the later. These results suggest that selective factors acting along a vegetation gradient can promote local adaptation in the presence of gene flow in a vagile, nonmigratory and geographically restricted species. The putative candidate SNPs identified here are located within or linked to a variety of genes that represent ideal targets for future genomic surveys. 相似文献
14.
Colin R. Mahony Ian R. MacLachlan Brandon M. Lind Jeremy B. Yoder Tongli Wang Sally N. Aitken 《Evolutionary Applications》2020,13(1):116-131
We evaluate genomic data, relative to phenotypic and climatic data, as a basis for assisted gene flow and genetic conservation. Using a seedling common garden trial of 281 lodgepole pine (Pinus contorta) populations from across western Canada, we compare genomic data to phenotypic and climatic data to assess their effectiveness in characterizing the climatic drivers and spatial scale of local adaptation in this species. We find that phenotype‐associated loci are equivalent or slightly superior to climate data for describing local adaptation in seedling traits, but that climate data are superior to genomic data that have not been selected for phenotypic associations. We also find agreement between the climate variables associated with genomic variation and with 20‐year heights from a long‐term provenance trial, suggesting that genomic data may be a viable option for identifying climatic drivers of local adaptation where phenotypic data are unavailable. Genetic clines associated with the experimental traits occur at broad spatial scales, suggesting that standing variation of adaptive alleles for this and similar species does not require management at scales finer than those indicated by phenotypic data. This study demonstrates that genomic data are most useful when paired with phenotypic data, but can also fill some of the traditional roles of phenotypic data in management of species for which phenotypic trials are not feasible. 相似文献
15.
This study tests how divergent natural selection promotes genomic differentiation during ecological speciation. Specifically, we use adaptive ecological divergence (here, population divergence in host plant use and preference) as a proxy for selection strength and evaluate the correlation between levels of adaptive and genetic differentiation across pairwise population comparisons. Positive correlations would reveal the pattern predicted by our hypothesis, that of 'isolation by adaptation' (IBA). Notably, IBA is predicted not only for selected loci but also for neutral loci. This may reflect the effects of divergent selection on neutral loci that are 'loosely linked' to divergently selected loci or on geneflow restriction that facilitates genetic drift at all loci, including neutral loci that are completely unlinked to those evolving under divergent selection. Here, we evaluate IBA in maple- and willow-associated populations of Neochlamisus bebbianae leaf beetles. To do so, we collected host preference data to construct adaptive divergence indices and used AFLPs (amplified fragment length polymorphisms) and mitochondrial sequences to quantify genetic differentiation. Partial Mantel tests showed significant IBA in 'pooled' analyses of putatively neutral and of putatively selected ('outlier') AFLP loci. This pattern was also recovered in 12% of 'locus-specific' analyses that separately evaluated genetic differentiation at individual neutral loci. These results provided evidence for widespread effects of selection on neutral genomic divergence. Our collective findings indicate that host-related selection may play important roles in the population genomic differentiation of both neutral and selected gene regions in herbivorous insects. 相似文献
16.
山东南部景观生态对策研究 总被引:8,自引:2,他引:8
在对山东南部气候、地貌、土壤、植被等景观生态要素研究的基础上,以地貌和基质为基本线索、以植被为标志建立了该地区的景观生态分类系统.该系统为二级分类系统,包括7个景观型、17个景观亚型,其中,景观型根据植被(植被型或栽培植被型)划分,景观亚型根据地貌、植被(群系组或栽培组合)划分.以景观亚型或景观亚型的组合为基本单位,以1∶100万土壤图为基础底图,参考多种比例尺的卫星照片、植被图、土地利用图、地貌图等,编制了山东南部1∶100万景观生态类型图;在景观生态类型图上量算了各景观亚型的面积.据此详细分析了山东南部稀疏植被景观、常绿针叶林景观、落叶阔叶林景观、旱地作物景观、水旱轮作景观、湖泊景观等主要景观型的生态问题,提出了相应的生态对策 相似文献
17.
Isabel S. Magalhaes Daniele D'Agostino Paul A. Hohenlohe Andrew D. C. MacColl 《Molecular ecology》2016,25(17):4319-4336
There has been a large focus on the genetics of traits involved in adaptation, but knowledge of the environmental variables leading to adaptive changes is surprisingly poor. Combined use of environmental data with morphological and genomic data should allow us to understand the extent to which patterns of phenotypic and genetic diversity within a species can be explained by the structure of the environment. Here, we analyse the variation of populations of three‐spined stickleback from 27 freshwater lakes on North Uist, Scotland, that vary greatly in their environment, to understand how environmental and genetic constraints contribute to phenotypic divergence. We collected 35 individuals per population and 30 abiotic and biotic environmental parameters to characterize variation across lakes and analyse phenotype–environment associations. Additionally, we used RAD sequencing to estimate the genetic relationships among a subset of these populations. We found a large amount of phenotypic variation among populations, most prominently in armour and spine traits. Despite large variation in the abiotic environment, namely in ion composition, depth and dissolved organic Carbon, more phenotypic variation was explained by the biotic variables (presence of predators and density of predator and competitors), than by associated abiotic variables. Genetic structure among populations was partly geographic, with closer populations being more similar. Altogether, our results suggest that differences in body shape among stickleback populations are the result of both canalized genetic and plastic responses to environmental factors, which shape fish morphology in a predictable direction regardless of their genetic starting point. 相似文献
18.
Joseph E. Braasch Lionel N. Di Santo Zachary J. Tarble Jarrad R. Prasifka Jill A. Hamilton 《Evolutionary Applications》2021,14(9):2206-2220
Globally imperiled ecosystems often depend upon collection, propagation, and storage of seed material for use in restoration. However, during the restoration process demographic changes, population bottlenecks, and selection can alter the genetic composition of seed material, with potential impacts for restoration success. The evolutionary outcomes associated with these processes have been demonstrated using theoretical and experimental frameworks, but no study to date has examined their impact on the seed material maintained for conservation and restoration. In this study, we compare genomic variation across seed sources used in conservation and restoration for the perennial prairie plant Helianthus maximiliani, a key component of restorations across North American grasslands. We compare individuals sourced from contemporary wild populations, ex situ conservation collections, commercially produced restoration material, and two populations selected for agronomic traits. Overall, we observed that ex situ and contemporary wild populations exhibited similar genomic composition, while four of five commercial populations and selected lines were differentiated from each other and other seed source populations. Genomic differences across seed sources could not be explained solely by isolation by distance nor directional selection. We did find evidence of sampling effects for ex situ collections, which exhibited significantly increased coancestry relative to commercial populations, suggesting increased relatedness. Interestingly, commercially sourced seed appeared to maintain an increased number of rare alleles relative to ex situ and wild contemporary seed sources. However, while commercial seed populations were not genetically depauperate, the genomic distance between wild and commercially produced seed suggests differentiation in the genomic composition could impact restoration success. Our results point toward the importance of genetic monitoring of seed sources used for conservation and restoration as they are expected to be influenced by the evolutionary processes that contribute to divergence during the restoration process. 相似文献
19.
Kirstin M. Proft Menna E. Jones Christopher N. Johnson Christopher P. Burridge 《Restoration Ecology》2018,26(3):411-418
The success of restoration activities is affected by connectivity with the surrounding landscape. From a genetic perspective, landscape connectivity can influence gene flow, effective size, and genetic diversity of populations, which in turn have impacts on the fitness and adaptive potential of species in restored areas. Researchers and practitioners are increasingly using genetic data to incorporate elements of connectivity into restoration planning and evaluation. We show that genetic studies of connectivity can improve restoration planning in three main ways. First, by comparing genetic estimates of contemporary and historical gene flow and population size, practitioners can establish historical baselines that may provide targets for restoration of connectivity. Second, empirical estimates of dispersal, landscape resistance to movement, and adaptive genetic variance can be derived from genetic data and used to parameterize existing restoration planning tools. Finally, restoration actions can also be targeted to remove barriers to gene flow or mitigate pinch‐points in corridors. We also discuss appropriate methods for evaluating the restoration of gene flow over timescales required by practitioners. Collaboration between restoration geneticists, ecologists, and practitioners is needed to develop practical and innovative ways to further incorporate connectivity into restoration practice. 相似文献
20.
淮河下游地区景观生态对策研究阎传海宋永昌(徐州师范大学地理系,徐州221009)(华东师范大学环境科学系,上海200062)StudyoftheEcologicalStrategiesoftheLandscapeintheLowerHuaiheVal... 相似文献