首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Previously it demonstrated that in the absence of Ca2+ entry, evoked secretion occurs neither by membrane depolarization, induction of [Ca2+] i rise, nor by both combined (Ashery, U., Weiss, C., Sela, D., Spira, M. E., and Atlas, D. (1993). Receptors Channels 1:217–220.). These studies designate Ca2+ entry as opposed to [Ca2+] i rise, essential for exocytosis. It led us to propose that the channel acts as the Ca2+ sensor and modulates secretion through a physical and functional contact with the synaptic proteins. This view was supported by protein–protein interactions reconstituted in the Xenopus oocytes expression system and release experiments in pancreatic cells (Barg, S., Ma, X., Elliasson, L., Galvanovskis, J., Gopel, S. O., Obermuller, S., Platzer, J., Renstrom, E., Trus, M., Atlas, D., Streissnig, G., and Rorsman, P. (2001). Biophys. J.; Wiser, O., Bennett, M. K., and Atlas, D. (1996). EMBO J. 15:4100–4110; Wiser, O., Trus, M., Hernandez, A., Renström, E., Barg, S., Rorsman, P., and Atlas, D. (1999). Proc. Natl. Acad. Sci. U.S.A. 96:248–253). The kinetics of Cav1.2 (Lc-type) and Cav2.2 (N-type) Ca2+ channels were modified in oocytes injected with cRNA encoding syntaxin 1A and SNAP-25. Conserved cysteines (Cys271, Cys272) within the syntaxin 1A transmembrane domain are essential. Synaptotagmin I, a vesicle-associated protein, accelerated the activation kinetics indicating Cav2.2 coupling to the vesicle. The unique modifications of Cav1.2 and Cav2.2 kinetics by syntaxin 1A, SNAP-25, and synaptotagmin combined implied excitosome formation, a primed fusion complex of the channel with synaptic proteins. The Cav1.2 cytosolic domain Lc753–893, acted as a dominant negative modulator, competitively inhibiting insulin release of channel-associated vesicles (CAV), the readily releasable pool of vesicles (RRP) in islet cells. A molecular mechanism is offered to explain fast secretion of vesicles tethered to SNAREs-associated Ca2+ channel. The tight arrangement facilitates the propagation of conformational changes induced during depolarization and Ca2+-binding at the channel, to the SNAREs to trigger secretion. The results imply a rapid Ca2+-dependent CAV (RRP) release, initiated by the binding of Ca2+ to the channel, upstream to intracellular Ca2+ sensor thus establishing the Ca2+ channel as the Ca2+ sensor of neurotransmitter release.  相似文献   

2.
We have used membrane capacitance measurements and carbon-fiber amperometry to assay exocytosis triggered by photorelease of caged Ca(2+) to directly measure the Ca(2+) sensitivity of exocytosis from the INS-1 insulin-secreting cell line. We find heterogeneity of the Ca(2+) sensitivity of release in that a small proportion of granules makes up a highly Ca(2+)-sensitive pool (HCSP), whereas the bulk of granules have a lower sensitivity to Ca(2+). A substantial HCSP remains after brief membrane depolarization, suggesting that the majority of granules with high sensitivity to Ca(2+) are not located close to Ca(2+) channels. The HCSP is enhanced in size by glucose, cAMP, and a phorbol ester, whereas the Ca(2+)-sensitive rate constant of exocytosis from the HCSP is unaffected by cAMP and phorbol ester. The effects of cAMP and phorbol ester on the HCSP are mediated by PKA and PKC, respectively, because they can be blocked with specific protein kinase inhibitors. The size of the HCSP can be enhanced by glucose even in the presence of high concentrations of phorbol ester or cAMP, suggesting that glucose can increase granule pool sizes independently of activation of PKA or PKC. The effects of PKA and PKC on the size of the HCSP are not additive, suggesting they converge on a common mechanism. Carbon-fiber amperometry was used to assay quantal exocytosis of serotonin (5-HT) from insulin-containing granules following preincubation of INS-1 cells with 5-HT and a precursor. The amount or kinetics of release of 5-HT from each granule is not significantly different between granules with higher or lower sensitivity to Ca(2+), suggesting that granules in these two pools do not differ in morphology or fusion kinetics. We conclude that glucose and second messengers can modulate insulin release triggered by a high-affinity Ca(2+) sensor that is poised to respond to modest, global elevations of [Ca(2+)](i).  相似文献   

3.
1. Voltage-gated Na+ channels are responsible for initiation and conduction of action potentials. The arrival of an action potential at nerve terminal increases intracellular Na+ and Ca2+ concentrations. Calcium entry into neurons through voltage-dependent calcium channels is associated with a variety of intracellular processes. Scorpion neurotoxins have been used as tools to investigate mechanisms involved in neurotransmitter release. Tityustoxin (TsTX) is an -type toxin that delays Na+-channel inactivation. Toxin- (TiTX-) is a -type toxin that induces Na+-channel activation at resting potentials.2. In the present work, we describe the effects of both toxins on [3H]acetylcholine ([3H]ACh) release from rat cerebrocortical synaptosomes, in the presence or absence of the calcium channels blockers: -conotoxin-GVIA (-CgTx), 1 M; -agatoxin-IVA (-Aga), 30 nM; -conotoxin-MVIIC (-MVIIC), 1 M; or verapamil, 1M.3. TsTX evokes [3H]ACh release in a concentration-dependent manner with a gradual increase up to saturation at concentrations of 500 nM. However, release of ACh evoked by TiTX- was not linear regarding the toxin concentration. The [3H]-ACh release evoked by TsTX or TiTX- was partially inhibited by -CgTx or -Aga, and blocked with -MVIIC. Verapamil (1 M) had no effect. Tetrodotoxin blocked [3H]ACh release evoked by both toxins.4. These results show that different actions on Na+-channels produce different effects on [3H]ACh release with involvement of distinct presynaptic Ca2+-channels, which supports the idea that sodium channels may modulate neurotransmitter release.  相似文献   

4.
A molecular dynamics investigation of the helical forms adopted by (1→4)‐α‐L ‐guluronan in explicit water environment was carried out. Single chains and duplexes were modeled at 300 K starting both from 21 or 32 helical conformations and in the presence of a neutralizing amount of Ca2+ ions. All systems were allowed full conformational freedom. The initial perfect helices with integral screw symmetries were lost at the very beginning of simulations and two distinct behaviors were observed: At equilibrium the 21 models mostly retained the 21 local helical conformations while exploring the 32 ones the rest of the time. In duplexes the two chains, which behaved similarly, were well extended and slightly twisted. By contrast, the chains in 32 duplex models were dissimilar and explored a much broader conformational space in which 21 and 32 local helical conformations were dominant and equally represented but the 31 and other conformations were also present. The wide variety of conformations revealed in this study is consistent with the general difficulty in obtaining crystals of Ca2+‐guluronate with suitable lateral dimensions for crystallographic studies. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 562–571, 2013.  相似文献   

5.
M Ovaska  J Taskinen 《Proteins》1991,11(2):79-94
Calcium sensitizers are drugs which increase force development in striated muscle by sensitizing myofilaments to Ca2+. This can happen by increasing Ca2+ affinity of the regulatory domain of Ca2+ binding protein troponin C. High resolution crystal structures of two calcium binding proteins, calmodulin (Babu et al.: J. Mol. Biol. 203:191-204, 1988) and skeletal troponin C (Satyshur et al.: J. Biol. Chem. 263:1628-1647, 1988; Herzber et al.: J. Mol. Biol. 203:761-779, 1988), have recently been published. This makes it possible to model in detail the calcium-sensitizing action of drugs on troponin C. In this study a model of human cardiac troponin C in three-calcium state has been constructed. When calcium is bound to calcium site II of cardiac troponin C an open conformation of the protein results, which has a hydrophobic pocket surrounded by a few polar side chains. Complexation of three drugs, trifluoperazine, bepridil, and pimobendan, to the hydrophobic pocket is studied using energy minimization techniques. Two different binding modes are found, which differ in the location of a strong electrostatic interaction. In analogy with the crystal structure of skeletal troponin C it is hypothezed that in cardiac troponin C an interaction occurs between Gln-50 and Asp-88, which has a long-range effect on calcium binding. The binding modes of drugs, where a strong interaction with Asp-88 exists, can effectively prevent the interaction between Asp-88 and Gln-50 in the protein, and are proposed to be responsible for the calcium-sensitizing properties of the studied drugs.  相似文献   

6.
A microfluidic array was constructed for trapping single cell and loading identical dynamic biochemical stimulation for gain a better understanding of Ca2+ signaling at single cell resolution in the present study. This microfluidic array consists of multiple radially aligned flow channels with equal intersection angles, which was designed by a combination of stagnation point flow and physical barrier. Numerical simulation results and trajectory analysis have shown the effectiveness of this single cell trapping device. Fluorescent experiment results demonstrated the effects of flow rate and frequency of dynamic stimulus on the profiles of biochemical concentration which exposed on captured cells. In this microarray, the captured single cells in each trapping channels were able to receive identical extracellular dynamic biochemical stimuli which being transmitted from the entrance in the middle of the microfluidic array. Besides, after loading dynamic Adenosine Triphosphate (ATP) stimulation on captured cells by this device, consistent average intracellular Ca2+ dynamics phase and cellular heterogeneity were observed in captured single K562 cells. Furthermore, this device is able to be used for investigating cellular respond on single cell resolution to temporally varying environments by modulating the stimulation signal in terms of concentration, pattern, and duration of exposure.  相似文献   

7.
Rapid stomatal closure is driven by the activation of S‐type anion channels in the plasma membrane of guard cells. This response has been linked to Ca2+ signalling, but the impact of transient Ca2+ signals on S‐type anion channel activity remains unknown. In this study, transient elevation of the cytosolic Ca2+ level was provoked by voltage steps in guard cells of intact Nicotiana tabacum plants. Changes in the activity of S‐type anion channels were monitored using intracellular triple‐barrelled micro‐electrodes. In cells kept at a holding potential of ?100 mV, voltage steps to ?180 mV triggered elevation of the cytosolic free Ca2+ concentration. The increase in the cytosolic Ca2+ level was accompanied by activation of S‐type anion channels. Guard cell anion channels were activated by Ca2+ with a half maximum concentration of 515 nm (SE = 235) and a mean saturation value of ?349 pA (SE = 107) at ?100 mV. Ca2+ signals could also be evoked by prolonged (100 sec) depolarization of the plasma membrane to 0 mV. Upon returning to ?100 mV, a transient increase in the cytosolic Ca2+ level was observed, activating S‐type channels without measurable delay. These data show that cytosolic Ca2+ elevation can activate S‐type anion channels in intact guard cells through a fast signalling pathway. Furthermore, prolonged depolarization to 0 mV alters the activity of Ca2+ transport proteins, resulting in an overshoot of the cytosolic Ca2+ level after returning the membrane potential to ?100 mV.  相似文献   

8.
Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7‐nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca2+ signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca2+ signaling and cell viability. We used human SH‐SY5Y neuroblastoma cells overexpressing α7‐nAChRs (α7‐SH) and their control (C‐SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca2+ with Fura‐2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch‐clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7‐SH but not of C‐SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca2+ concentration; (iii) released Ca2+ from the ER by a Ca2+‐induced Ca2+ release mechanism only in α7‐SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7‐nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7‐nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca2+, overloading of intracellular Ca2+, and neuronal cell death.

  相似文献   


9.
The mutated form of the Ca2+ channel CALHM1 (Ca2+ homeostasis modulator 1), P86L‐CALHM1, has been correlated with early onset of Alzheimer's disease (AD). P86L‐CALHM1 increases production of amyloid beta (Aβ) upon extracellular Ca2+ removal and its subsequent addback. The aim of this study was to investigate the effect of the overexpression of CALHM1 and P86L‐CALHM, upon Aβ treatment, on the following: (i) the intracellular Ca2+ signal pathway; (ii) cell survival proteins ERK1/2 and Ca2+/cAMP response element binding (CREB); and (iii) cell vulnerability after treatment with Aβ. Using aequorins to measure the effect of nuclear Ca2+ concentrations ([Ca2+]n) and cytosolic Ca2+ concentrations ([Ca2+]c) on Ca2+ entry conditions, we observed that baseline [Ca2+]n was higher in CALHM1 and P86L‐CALHM1 cells than in control cells. Moreover, exposure to Aβ affected [Ca2+]c levels in HeLa cells overexpressing CALHM1 and P86L‐CALHM1 compared with control cells. Treatment with Aβ elicited a significant decrease in the cell survival proteins p‐ERK and p‐CREB, an increase in the activity of caspases 3 and 7, and more frequent cell death by inducing early apoptosis in P86L‐CALHM1‐overexpressing cells than in CALHM1 or control cells. These results suggest that in the presence of Aβ, P86L‐CALHM1 shifts the balance between neurodegeneration and neuronal survival toward the stimulation of pro‐cytotoxic pathways, thus potentially contributing to its deleterious effects in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号