Copper (Cu) offers a means for producing value‐added fuels through the electrochemical reduction of carbon dioxide (CO2), i.e., the CO2 reduction reaction (CO2RR), but designing Cu catalysts with significant Faradaic efficiency to C2+ products remains as a great challenge. This work demonstrates that the high activity and selectivity of Cu to C2+ products can be achieved by atomic‐scale spacings between two facets of Cu particles. These spacings are created by lithiating CuOx particles, removing lithium oxides formed, and electrochemically reducing CuOx to metallic Cu. Also, the range of spacing (ds) is confirmed via the 3D tomographs using the Cs‐corrected scanning transmission electron microscopy (3D tomo‐STEM), and the operando X‐ray absorption spectra show that oxidized Cu reduces to the metallic state during the CO2RR. Moreover, control of ds to 5–6 Å allows a current density exceeding that of unmodified CuOx nanoparticles by about 12 folds and a Faradaic efficiency of ≈80% to C2+. Density functional theory calculations support that ds of 5–6 Å maximizes the binding energies of CO2 reduction intermediates and promotes C–C coupling reactions. Consequently, this study suggests that control of ds can be used to realize the high activity and C2+ product selectivity for the CO2RR. 相似文献
Bacteriocin AS-48 is a 70-residue cyclic polypeptide from Enterococcus faecalis that shows a broad antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. The structure of bacteriocin AS-48 consists of a globular arrangement of five helices with a high positive electrostatic potential in the region comprising helix 4, the turn linking helix 4 and 5, and the N-terminus of helix 5. This region has been considered to participate in its biological activity and in particular in membrane permeation. To understand the mechanism of the antibacterial activity of AS-48 and to discriminate the several mechanisms proposed, a simplified bacteriocin was designed consisting of 21 residues and containing the high positively charged region. A disulfide bridge was introduced at an appropriate position to stabilize the peptide and to conserve the helix-turn-helix arrangement in the parent molecule. According to (1)H and (13)C NMR data, the designed simplified bacteriocin fragment adopts a significant population of a native-like helical hairpin conformation in aqueous solution, which is further stabilized in 30% TFE. The designed peptide does not show any antibacterial activity, though it is shown to compete with the intact native bacteriocin AS-48. These results suggest that the mechanism of membrane disruption by bacteriocin is not as simple as being driven by a deposition of positively charged molecules on the plane of the bacterial membrane. Some other regions of the protein must be present such as, for instance, hydrophobic regions so as to enhance the accumulation of the peptide and favour membrane permeation. 相似文献
Three new withanolides ( 1 – 3 ), named as daturanolide A–C, along with six known withanolides ( 4 – 9 ) were isolated from the flowers of Datura metel L. Their structures with absolute configurations were elucidated by a series of spectroscopic methods, electronic circular dichroism (ECD) analyses, and X‐ray crystallography. All the isolates were evaluated for cytotoxicity against five human cancer cell lines (HCT116, U87‐MG, NCI‐H460, BGC823, and HepG2), and 6 exhibited marked cytotoxicity. 相似文献
As reported previously, in the lithium–pilocarpine model of temporal lobe epilepsy (TLE), carisbamate (CRS) produces strong neuroprotection, leads to milder absence‐like seizures, and prevents behavioral impairments in a subpopulation of rats. To understand the metabolic basis of these effects, here we injected 90 mg/kg CRS or vehicle twice daily for 7 days starting 1 h after status epilepticus (SE) induction in rats. Two months later, we injected [1‐13C]glucose and [1,2‐13C]acetate followed by head microwave fixation after 15 min. 13C incorporation into metabolites was analyzed using 13C magnetic resonance spectroscopy. We found that SE reduced neuronal mitochondrial metabolism in the absence but not in the presence of CRS. Reduction in glutamate level was prevented by CRS and aspartate levels were similar to controls only in rats displaying absence‐like seizures after treatment [CRS‐absence‐like epilepsy (ALE)]. Glutamine levels in CRS‐ALE rats were higher compared to controls in hippocampal formation and limbic structures while unchanged in rats displaying motor spontaneous recurrent seizures after treatment (CRS‐TLE). Astrocytic mitochondrial metabolism was reduced in CRS‐TLE, and either enhanced or unaffected in CRS‐ALE rats, which did not affect the transfer of glutamine from astrocytes to neurons. In conclusion, CRS prevents reduction in neuronal mitochondrial metabolism but its effect on astrocytes is likely key in determining outcome of treatment in this model.
Infection with Listeria induces a dominant shift to the Th1 immune response and inhibits the Th2 response. Papain is frequently utilized in animal models of allergies. Papain administration induces chemotaxis of basophils to regional lymph nodes (LNs) and production of interleukin (IL)‐4 by basophils, resulting in a Th2‐dominant status and increased IgE production in LNs. In this model, production of immunoglobulin (Ig) E by LN cells is primarily controlled by IL‐4 produced by basophils. Based on this model, it was postulated that Listeria monocytogenes (Lm) infection suppresses IgE production by LN cells. Therefore, the effects of Lm infection on a papain‐induced mouse model of allergies were investigated. Following s.c. injection of papain, basophils transiently migrated to draining LNs because of the effects of chemokine (C–C) motif ligand (CCL) 24 and secreted IL‐4, inducing a Th2 response. Lm infection blocked recruitment of basophils into the popliteal LNs by inhibiting CCL24 production. Papain‐induced class switch recombination (CSR) to IgE is inhibited by Lm infection, whereas CSR to IgG1 is not affected by the same treatment. Therefore, the CSR of IgG1 to IgE is basophil‐dependent, whereas the CSR of IgM to IgG1 is basophil‐independent. Hence, Lm infection suppresses CSR to IgE without affecting CSR to IgG1. 相似文献
Summary We have developed a useful strategy for identifying amino acid spin systems and side-chain carbon resonance assignments in small 15N-, 13C-enriched proteins. Multidimensional constant-time pulsed field gradient (PFG) HCC(CO)NH-TOCSY experiments provide side-chain resonance frequency information and establish connectivities between sequential amino acid spin systems. In PFG HCC(CO)NH-TOCSY experiments recorded with a properly tuned constant-time period for frequency labeling of aliphatic 13C resonances, phases of cross peaks provide information that is useful for identifying spin system types. When combined with 13C chemical shift information, these patterns allow identification of the following spin system types: Gly, Ala, Thr, Val, Leu, Ile, Lys, Arg, Pro, long-type (i.e., Gln, Glu and Met), Ser, and AMX-type (i.e., Asp, Asn, Cys, His, Phe, Trp and Tyr). 相似文献
Soil microorganisms are the primary mediators of organic matter decomposition and humification processes in soil, which represent
a critical C flux in the global C cycle. Little is known about how soil microbes regulate carbon cycling including the contribution
of their own biomass to stable soil organic matter. A comprehensive understanding of microbial composition is a first step
to unraveling microbial regulation of soil humification processes. For this purpose, we isolated 23 microbial strains representing
four major groups (Gram (+) bacteria, Gram (−) bacteria, Actinobacteria, and Fungi) from a temperate and a tropical forest
soil. The microbial isolates were cultured with uniformly 13C-labeled glucose as the C source such that all biochemical components synthesized from glucose were 13C labeled. This approach enabled field mesocosm experiments on tracking microbial decomposition, while facilitating solution-
and solid-state NMR analysis of microbial composition. Polar and lipid extracts of labeled biomass of the four microbial groups
from the two forest sites were profiled by 2D NMR methods, including high-resolution heteronuclear single quantum coherence
spectroscopy and HCCH-total correlation spectroscopy. This 13C labeling approach also enabled the analysis of intact biomass by 2D solid-state 13C–13C correlation spectroscopy. Distinction between microbial groups and sites was observed in the polar and lipophilic metabolite
profiles. Dominant differences could also be related to the capacity for lipid β-oxidation or adaptation to desiccation. Solid-state
NMR further revealed differential synthetic capacity for glycolipids among groups. This technology coupled with 13C metabolite profiling should facilitate future functional annotation of indigenous microbial genomes. 相似文献
Corema (C.) album is a shrub endemic to the Atlantic coast and has been described as yielding beneficial effects for human health. Nevertheless, studies concerning the bioactivity of C. album leaves are scarce. This study aims at investigating the anticancer potential and mode of action, of an hydroethanolic extract of C. album leaves (ECAL) on triple-negative breast cancer. This is a poor survival breast cancer subtype, owing to its high risk of distant reappearance, metastasis rates and the probability of relapse. The ECAL ability to prevent tumor progression through (i) the inhibition of cell proliferation (cell viability); (ii) the induction of apoptosis (morphological changes, TUNEL assay, caspase-3 cleaved) and (iii) the induction of DNA damage (PARP1 and γH2AX) with (iv) the involvement of NF-κB and of ERK1/2 pathways (AlphaScreen assay) was evaluated. ECAL activated the apoptotic pathway (through caspase-3) along with the inhibition of ERK and NF-κB pathways causing DNA damage and cell death. The large polyphenolic content of ECAL was presumed to be accountable for these effects. The extract of C. album leaves can target multiple pathways and, thus, can block more than one possible means of disease progression, evidencing the anticancer therapeutic potential from a plant source. 相似文献
Summary Relaxation times of 13C carbons of uniformly 13C/15N-enriched probes have been investigated. The relaxation behaviour was analyzed in terms of a multispin system. Pulse sequences for the determination of T1, T2 and the heteronuclear NOE of 13C in uniformly 13C/15N-enriched ribonuclease T1 are presented. The experiments performed in order to obtain T1 and the heteronuclear NOE were similar to those of the corresponding 15N experiments published previously. The determination of T2 for the C-carbon in a completely labeled protein is more complicated, since the magnetization transfer during the T2 evolution period owing to the scalar coupling of C–C must be suppressed. Various different pulse sequences for the T2 evolution period were simulated in order to optimize the bandwidth for which reliable T2 relaxation times can be obtained. A proof for the quality of these pulse sequences is given by fitting the intensity decay of individual 1H–13C cross peaks, in a series of (1H, 13C)-ct-HSQC spectra with a modified CPMG sequence as well as a T1p sequence for the transverse relaxation time, to a single exponential using a simplex algorithm. 相似文献
Facile syntheses of 3-O-carbamoyl, -sulfamoyl, or -pivaloyl derivatives of 13α-oestrone and its 17-deoxy counterpart have been carried out. Microwave-induced, Ni-catalysed Suzuki–Miyaura couplings of the newly synthesised phenol esters with phenylboronic acid afforded 3-deoxy-3-phenyl-13α-oestrone derivatives. The carbamate and pivalate esters proved to be suitable for regioselective arylations. 2-(4-Substituted) phenyl derivatives were synthesised via Pd-catalysed, microwave-assisted C–H activation reactions. An efficient, one-pot, tandem methodology was elaborated for the introduction of the carbamoyl or pivaloyl group followed by regioselective C-2-arylation and subsequent removal of the directing group. The antiproliferative properties of the novel 13α-oestrone derivatives were evaluated in vitro on five human adherent cancer cell lines of gynaecological origin. 3-Sulfamate derivatives displayed substantial cell growth inhibitory potential against certain cell lines. The newly identified antiproliferative compounds having hormonally inactive core might be promising candidates for the design of more active anticancer agents. 相似文献
Abstract: The effects of D1 and D2 dopamine ligands on protein kinase C (PKC) activity were examined in synaptoneurosomes. Incubation with D1 agonists (SKF 38393, fenodopam), in the presence of calcium, decreased the soluble and increased the particulate PKC activity. These effects were reversed by SCH 23390, which by itself had the opposite effect of increasing the soluble and decreasing the particulate PKC activity. In contrast, incubation with the D2 agonists [LY 171555, (+)-3-(3-hydroxyphenyl)- N - n -propylpiperidine, RU 24213] increased the soluble and decreased the particulate PKC activity. These effects were reversed by sulpiride. (−)-3-(3-Hydroxyphenyl)- N - n -propylpiperidine had a D2 antagonist profile. Apomorphine showed a biphasic dose-response change; i.e., it decreased particulate PKC activity at the D2 receptor at low concentrations (0.1 µ M ) and increased it at the D1 receptor at higher concentrations (10 µ M ). Pretreatment with tetrodotoxin or omission of calcium in the incubation medium did not alter the responses of the D2 agonists, but it reversed the changes in PKC activity induced by the D1 agonists and converted the biphasic response of apomorphine to a monophasic inhibition. These results indicate that (1) D1 and D2 dopamine receptors are negatively coupled to PKC and (2) the increase in particulate PKC activity seen with the D1 drugs in the presence of calcium is mediated indirectly via a transneuronal effect. 相似文献