首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
Trophic interactions and disturbance events can shape the structure and function of ecosystems. However, the effects of drivers such as predation, fire and climatic variables on species distributions are rarely considered concurrently. We used a replicated landscape‐scale predator management experiment to compare the effects of red fox Vulpes vulpes control, time‐since‐fire, vegetation type and other environmental variables on native herbivore distributions. Occurrence data for four native herbivores and an invasive predator – the red fox – were collected from 240 sites across three baited (for lethal fox control) and three unbaited forest blocks (4659–9750 ha) in south‐western Victoria, Australia, and used to build species distribution models. The herbivore taxa were as follows: red‐necked wallaby Macropus rufogriseus, black wallaby Wallabia bicolour, grey kangaroo Macropus fuligenosus and Macropus giganteus and common brushtail possum Trichosurus vulpecula. Fox control and fire had little effect on herbivore occurrence, despite the literature suggesting it can influence abundance, while climate, proximity to farmland and topography were more influential. This may be because the region’s high productivity and agricultural pastures subsidise food resources for both predators and prey within the forest blocks and so dampen trophic interactions. Alternatively, these drivers may affect herbivore abundance, but not herbivore occurrence. Understanding the drivers of herbivore distributions is an important step in predicting the effects of herbivory on other species, particularly after management interventions such as predator control and prescribed burns.  相似文献   

2.
The conservation of Spotted Owl (Strix occidentalis) populations has been one of the most controversial and visible issues in United States conservation history. Coincident with declines in Spotted Owl populations over the last three decades has been the invasion of Barred Owls (Strix varia) throughout the range of the Northern Spotted Owl (S. o. caurina) and into the range of the California Spotted Owl (S. o. occidentalis). This invasion has confused the reasons behind recent Spotted Owl declines because anecdotal and correlative information strongly suggests that Barred Owls are a new factor influencing the declines. There is great uncertainty about all aspects of the invasion, and this has sparked discussion about appropriate management and research responses regarding the effects of this invasion on Spotted Owls. We present a set of possible responses to address the issue, and we discuss the relative merits of these with regard to their efficacy given the current state of knowledge. We recommend that research specifically aimed at learning more about the interspecific relationships of these two owls throughout the range of sympatry should begin immediately. Approaches that seem unlikely to be useful in the short-term either because they do not facilitate knowledge acquisition, are relatively costly, or would be technically less feasible, should not be considered viable at this time. We believe the consequences of the invasion are potentially dire for the Spotted Owl and that research and management actions, including the use of adaptive management, are required to inform the near- and long-term decision-making process for conservation of Spotted Owls.  相似文献   

3.
Understanding mechanisms underlying fire regime effects on savanna fauna is difficult because of a wide range of possible trophic interactions and feedbacks. Yet, understanding mechanisms underlying fauna dynamics is crucial for conservation management of threatened species. Small savanna mammals in northern Australia are currently undergoing widespread declines and regional extinctions partly attributable to fire regimes. This study investigates mammal trophic and ecosystem responses to fire in order to identify possible mechanisms underlying these declines. Mammal trophic responses to fire were investigated by surveying mammal abundance, mammal diet, vegetation structure and non‐mammal fauna dynamics in savannas six times at eight sites over a period of 3 years. Known site‐specific fire history was used to test for trophic responses to post‐fire interval and fire frequency. Mammal and non‐mammal fauna showed only minor responses of post‐fire interval and no effect of fire frequency. Lack of fauna responses differed from large post‐fire vegetation responses. Dietary analysis showed that two mammal species, Dasyurus hallucatus and Isoodon auratus, increased their intake of large prey groups in recently burnt, compared to longer unburnt vegetation. This suggests a fire‐related change in trophic interactions among predators and their prey, after removal of ground‐layer vegetation. No evidence was found for other changes in food resource uptake by mammals after fire. These data provide support for a fire‐related top‐down ecosystem response among savanna mammals, rather than a bottom‐up resource limitation response. Future studies need to investigate fire responses among other predators, including introduced cats and dingoes, to determine their roles in fire‐related mammal declines in savannas of northern Australia.  相似文献   

4.
According to apparent competition theory, the co‐occurrence of two species that share the same predators appears to affect each other's population growth and abundance. However, due to habitat loss and over‐hunting, top predators are being made rare worldwide. Considering that apparent competitors share similar resources, we would expect the absence of top predators to reflect in changes on prey realized trophic niches. To test our hypothesis, we developed a model to predict the abundance ratio of apparent competitor species based on changes in their realized trophic niches. We tested our model against field data on the Neotropical marsupials Didelphis aurita and Metachirus nudicaudatus. Our results revealed that D. aurita and M. nudicaudatus are two species under apparent competition and their realized trophic niche and diet overlap change according to the presence of top predators. The model was able to predict the actual relative abundances of D. aurita and M. nudicaudatus in the three empirical studies analyzed. Our study presents quantitative support to the apparent competition theory; however, the model's applications to other groups still need to be verified. Additionally, our study shows that the lack of top predators has consequences on the realized trophic niche of their prey, and therefore, we reinforce that conservation plans need to focus on the effects of top predator loss on ecosystems.  相似文献   

5.
Quantifying species trophic interaction strengths is crucial for understanding community dynamics and has significant implications for pest management and species conservation. DNA-based methods to identify species interactions have revolutionized these efforts, but a significant limitation is the poor ability to quantify the strength of trophic interactions, that is the biomass or number of prey consumed. We present an improved pipeline, called Lazaro, to map unassembled shotgun reads to a comprehensive arthropod mitogenome database and show that the number of prey reads detected is quantitatively predicted from the prey biomass consumed, even for indirect predation. Two feeding bioassays were performed: starved coccinellid larvae consuming different numbers of aphids (Prey Quantity bioassay), and starved coccinellid larvae consuming a chrysopid larvae that had consumed aphids (Direct and Indirect Predation bioassay). Prey taxonomic assignment against a mitochondrial genome database had high accuracy (99.8% positive predictive value) and the number of prey reads was directly related to the number of prey consumed and inversely related to the elapsed time since consumption with high significance (r2 = .932, p = 4.92E-6). Aphids were detected up to 6 h after direct predation plus 3 h after indirect predation (9 h in total) and detection was related to the predator-specific decay rates. Lazaro enabled quantitative predictions of prey consumption across multiple trophic levels with high taxonomic resolution while eliminating all false positives, except for a few confirmed contaminants, and may be valuable for characterizing prey consumed by field-sampled predators. Moreover, Lazaro is readily applicable for species diversity determination from any degraded environmental DNA.  相似文献   

6.
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls.  相似文献   

7.
Striped hyenas (Hyaena hyaena) are extremely rare in Nepal, and only a few people have studied them in their natural forest and grassland habitat. Their rarity is due to anthropogenic pressures such as hunting, habitat modification, being killed on roads, and depletion of their natural prey. Here, we studied the feeding ecology of hyenas in lowland, Nepal. We employed an opportunistic sampling to collect hyena scats in a range of habitats and the line transect sampling to identify the prey of the hyena in the study site. We collected 68 hyena scats between 2015 and 2018. Most of the hyena scat (39.7%) was found in the Churia Hill forest followed by riverbed (26.4%), mixed forest (14.7%), Sal (Shorea robusta)‐dominated forest (11.7%), and grassland area (7.3%). We found eleven mammalian prey species, plants, and some unidentified items in the hyena scats. The frequency of occurrence and relative biomass of the medium‐sized wild boar (Sus scrofa) were higher than other smaller prey species such as hare (Lepus nigricollis) and rhesus macaque (Macaca mulatta). Similarly, the proportion of large prey species such as nilgai (Boselaphus tragocamelus) in the hyena diet was lower compared with wild boar, hares, and rhesus macaques indicating medium‐sized wild boar is the most preferred prey species. Livestock contributed 17.3% of the total dietary biomass. Domesticated species such as goats, sheep, cows, and even dogs were found in the diet of hyenas. Predation of livestock by hyenas could cause conflict, especially if this ongoing issue continues in the future. Rather, more conservation effort is required in lowland areas of Nepal to protect the hyenas' natural prey species, particularly in wildlife habitats to reduce the lure of taking domestic livestock. Similarly, conservation education at the local level and active involvement of government authorities in the conservation of this species might be helpful to mitigate human–hyena conflict in the human‐dominated landscape.  相似文献   

8.
9.
Plants provide resources and shape the habitat of soil organisms thereby affecting the composition and functioning of soil communities. Effects of plants on soil communities are largely taxon‐dependent, but how different functional groups of herbaceous plants affect trophic niches of individual animal species in soil needs further investigation. Here, we studied the use of basal resources and trophic levels of dominating soil meso‐ and macrofauna using stable isotope ratios of carbon and nitrogen in arable fallow systems 3 and 14–16 years after abandonment. Animals were sampled from the rhizosphere of three plant species of different functional groups: a legume (Medicaco sativa), a nonlegume herb (Taraxacum officinale), and a grass (Bromus sterilis). We found virtually no consistent effects of plant identity on stable isotope composition of soil animals and on thirteen isotopic metrics that reflect general food‐web structure. However, in old fallows, the carbon isotope composition of some predatory macrofauna taxa had shifted closer to that of co‐occurring plants, which was particularly evident for Lasius, an aphid‐associated ant genus. Trophic levels and trophic‐chain lengths in food webs were similar across plant species and fallow ages. Overall, the results suggest that variations in local plant diversity of grassland communities may little affect the basal resources and the trophic level of prey consumed by individual species of meso‐ and macrofauna belowground. By contrast, successional changes in grassland communities are associated with shifts in the trophic niches of certain species, reflecting establishment of trophic interactions with time, which shapes the functioning and stability of soil food webs.  相似文献   

10.
Strix (Strigidae) is a worldwide genus of 17 owl species typical of forested habitats, including Rusty‐barred Owls (S. hylophila), Chaco Owls (S. chacoensis), and Rufous‐legged Owls (S. rufipes) in South America. These species are distributed allopatrically, but the ecological traits that determine their distributions remain largely unknown and their phylogenetic relationships are unclear. We used species distribution models (SDMs) to identify variables explaining their distribution patterns and test hypotheses about ecological divergence and conservatism based on niche overlap analysis. For Rusty‐barred Owls and Chaco Owls, climatic factors related to temperature played a major role, whereas a rainfall variable was more important for Rufous‐legged Owls. When niche overlaps were compared, accounting for regional similarities in the habitat available to each species, an ecological niche divergence process was supported for Chaco Owl‐Rusty‐barred Owl and Chaco Owl‐Rufous‐legged Owl, whereas a niche conservatism process was supported for Rusty‐barred Owl‐Rufous‐legged Owl. Different ecological requirements support current species delimitation, but they are in disagreement with the two main hypotheses currently envisaged about their phylogenetic relationships (Chaco Owls as the sister taxa of either Rufous‐legged Owls or Rusty‐barred Owls) and support a new phylogenetic hypothesis (Rufous‐legged Owls as sister taxa of Rusty‐barred Owls). Our findings suggest that speciation of Rusty‐barred Owls and Rufous‐legged Owls was a vicariant event resulting from Atlantic marine transgressions in southern South America in the Miocene, but their niche was conserved because habitat changed little in their respective ranges. In contrast, Chaco Owls diverged ecologically from the other two species as a result of their adaptations to the habitat they currently occupy. Ecological and historical approaches in biogeography can be embedded to explain distribution patterns, and results provided by SDMs can be used to infer historical and ecological processes in an integrative way.  相似文献   

11.
Geographic variation and genetic structure in Spotted Owls   总被引:4,自引:2,他引:2  
We examined genetic variation, populationstructure, and definition of conservation unitsin Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory,long-lived, socially monogamous birds that havedecreased population viability due to theiroccupation of highly-fragmented latesuccessional forests in western North America. To investigate potential effects of habitatfragmentation on population structure, we usedrandom amplified polymorphic DNA (RAPD) toexamine genetic variation hierarchicallyamong local breeding areas, subregionalgroups, regional groups, and subspeciesvia sampling of 21 breeding areas (276individuals) among the three subspecies ofSpotted Owls. Data from 11 variable bandssuggest a significant relationship betweengeographic distance among local breeding groupsand genetic distance (Mantel r = 0.53, P< 0.02) although multi-dimensional scaling ofthree significant axes did not identifysignificant grouping at any hierarchical level. Similarly, neighbor-joining clustering ofManhattan distances indicated geographicstructure at all levels and identified MexicanSpotted Owls as a distinct clade. RAPDanalyses did not clearly differentiate NorthernSpotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates ofpopulation differentiation (FST) rangedfrom 0.27 among breeding areas to 0.11 amongregions. Concordantly, within-group agreementvalues estimated via multi-response permutationprocedures of Jaccard's distances ranged from0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST andgeographic distance within regions suggestedonly the Klamath region was in equilibrium withrespect to gene flow and genetic drift. Merging nuclear data with recent mitochondrialdata provides support for designation of anEvolutionary Significant Unit for MexicanSpotted Owls and two overlapping ManagementUnits for Northern and California Spotted Owls.  相似文献   

12.
The introduced coccinellid Cryptolaemus montrouzieri is extensively used by biological control practitioners against mealybugs. Potential risks on native guilds of natural enemies have recently been recognized, as C. montrouzieri has managed to establish in many of the regions, it has been released. We investigated in the laboratory the direct trophic interactions between Cryptolaemus montrouzieri and Nephus includens, a predatory coccinellid native to the Mediterranean region. For both adult coccinellid species, predation rates on conspecific or heterospecific juvenile stages, with different amounts of shared prey, were recorded after 24 h. Both predators consumed eggs and larvae, but only C. montrouzieri preyed upon pupae. In general, cannibalism decreased with shared prey abundance, regardless of species. A high level of asymmetry was found on intraguild predation, in favour of C. montrouzieri. The probability of displacement threat of N. includens by C. montrouzieri in nature, in addition to possible effects of the studied trophic interactions on the outcome of biological control, is discussed.  相似文献   

13.
Diets play a key role in understanding trophic interactions. Knowing the actual structure of food webs contributes greatly to our understanding of biodiversity and ecosystem functioning. The research of prey preferences of different predators requires knowledge not only of the prey consumed, but also of what is available. In this study, we applied DNA metabarcoding to analyze the diet of 4 bird species (willow tits Poecile montanus, Siberian tits Poecile cinctus, great tits Parus major and blue tits Cyanistes caeruleus) by using the feces of nestlings. The availability of their assumed prey (Lepidoptera) was determined from feces of larvae (frass) collected from the main foraging habitat, birch (Betula spp.) canopy. We identified 53 prey species from the nestling feces, of which 11 (21%) were also detected from the frass samples (eight lepidopterans). Approximately 80% of identified prey species in the nestling feces represented lepidopterans, which is in line with the earlier studies on the parids' diet. A subsequent laboratory experiment showed a threshold for fecal sample size and the barcoding success, suggesting that the smallest frass samples do not contain enough larval DNA to be detected by high‐throughput sequencing. To summarize, we apply metabarcoding for the first time in a combined approach to identify available prey (through frass) and consumed prey (via nestling feces), expanding the scope and precision for future dietary studies on insectivorous birds.  相似文献   

14.
ABSTRACT

Capsule: Diet analysis revealed high lead exposure for Greater Spotted Eagles Clanga clanga wintering in southeast Spain.

Aims: To describe the diet composition of the endangered Greater Spotted Eagle in a wintering area located in southeast Spain, and determine lead ammunition exposure through analysis of regurgitated pellets and prey remains.

Methods: Between 2008 and 2018, a total of 26 pellets, 29 prey remains and 10 direct predation observations were collected in El Hondo Natural Park, Spain. All the pellets and 10 prey remains were analysed with X-ray in order to detect metal from ammunition.

Results: Greater Spotted Eagles fed mainly on birds, with 18 different species accounting for 73.1% of prey items and 66.1% of biomass consumed. The most frequent species identified were Common Moorhen Gallinula chloropus (23.1%), rats Rattus spp. (15.4%) and Common Teal Anas crecca (8.9%). Ammunition was detected in 42.3% of regurgitated pellets and in 40.0% of prey remains analysed. Of those containing ammunition, lead shot was found in 63.9% of pellets and 25.0% of prey remains.

Conclusion: High lead shot presence in pellets and prey remains of wintering Greater Spotted Eagles in southeast Spain warns of a high risk of lead poisoning. Factors such as feeding behaviour, the large space–time overlap between the raptor presence and the waterbird hunting season and non-compliance with the ban on the use of lead ammunition are likely contributing to high lead exposure.  相似文献   

15.
Gut content analysis using molecular techniques can help elucidate predator‐prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species‐specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores’ main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator‐prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5‐fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator‐prey interactions in tiny species such as mites, which include important agricultural pests and their predators.  相似文献   

16.
Aya Yamaguchi  Osamu Kishida 《Oikos》2016,125(2):271-277
Intrapopulation size variation strongly influences ecological interactions because individuals belonging to different size groups have distinct functions. Most demonstrations of the impacts of size variation in trophic systems have focused on size variation in predator species, and the consequences of size variation in prey species are less well understood. We investigated how prey size structure shapes intra‐ and interspecific interactions in experiments with a gape‐limited predator (larvae of the salamander Hynobius retardatus) and its heterospecific prey (frog tadpoles, Rana pirica). We found that large and small tadpole size groups each increased mortality in the other group by intensifying salamander predation; this type of indirect interactions is called apparent competition. The antagonistic impacts on the prey size groups were caused by different size‐specific mechanisms. By consuming small tadpoles, the salamanders grew large enough to consume large tadpoles. The activity of large tadpoles, by increasing the activity of the small tadpoles, may increase the number of encounters with the predator and thus small tadpole mortality. These results suggest that the magnitude of a predator's ecological role, such as whether a top–down trophic cascade is initiated, depends on size variation in its heterospecific prey.  相似文献   

17.
18.
Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality – consistent individual differences in suites of behaviours – may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator‐resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades.  相似文献   

19.
Fire plays a key role in ecosystem dynamics worldwide, altering energy flows and species community structure and composition. However, the functional mechanisms underlying these effects are not well understood. Many ground‐dwelling animal species can shelter themselves from exposure to heat and therefore rarely suffer direct mortality. However, fire‐induced alterations to the environment may change a species' relative trophic level within a food web and its mode of foraging. We assessed how fire could affect ant resource utilization at different scales in a Mediterranean forest. First, we conducted isotopic analyses on entire ant species assemblages and their potential food resources, which included plants and other arthropods, in burned and unburned plots 1 year postfire. Second, we measured the production of males and females by nests of a fire‐resilient species, Aphaenogaster gibbosa, and analyzed the differences in isotopic values among workers, males, and females to test whether fire constrained resource allocation. We found that, in spite of major modifications in biotic and abiotic conditions, fire had little impact on the relative trophic position of ant species. The studied assemblage was composed of species with a wide array of diets. They ranged from being mostly herbivorous to completely omnivorous, and a given species' trophic level was the same in burned and unburned plots. In A. gibbosa nests, sexuals had greater δ15N values than workers in both burned and unburned plots, which suggests that the former had a more protein‐rich diet than the latter. Fire also appeared to have a major effect on A. gibbosa sex allocation: The proportion of nests that produced male brood was greater on burned zones, as was the mean number of males produced per nest with the same reproductive investment . Our results show that generalist ants with relatively broad diets maintained a constant trophic position, even following a major disturbance like fire. However, the dramatically reduced production of females on burned zones compared to unburned zones 1 year postfire may result in considerably reduced recruitment of new colonies in the mid to long term, which could yield genetic bottlenecks and founder effects. Our study paves the way for future functional analyses of fire‐induced modifications in ant populations and communities.  相似文献   

20.
Intraguild interactions among carnivores have long held the fascination of ecologists. Ranging from competition to facilitation and coexistence, these interactions and their complex interplay influence everything from species persistence to ecosystem functioning. Yet, the patterns and pathways of such interactions are far from understood in tropical forest systems, particularly across countries in the Global South. Here, we examined the determinants and consequences of competitive interactions between dholes Cuon alpinus and the two large felids (leopards Panthera pardus and tigers Panthera tigris) with which they most commonly co-occur across Asia. Using a combination of traditional and novel data sources (N = 118), we integrate information from spatial, temporal, and dietary niche dimensions. These three species have faced catastrophic declines in their extent of co-occurrence over the past century; most of their source populations are now confined to Protected Areas. Analysis of dyadic interactions between species pairs showed a clear social hierarchy. Tigers were dominant over dholes, although pack strength in dholes helped ameliorate some of these effects; leopards were subordinate to dholes. Population-level spatio-temporal interactions assessed at 25 locations across Asia did not show a clear pattern of overlap or avoidance between species pairs. Diet-profile assessments indicated that wild ungulate biomass consumption by tigers was highest, while leopards consumed more primate and livestock prey as compared to their co-predators. In terms of prey offtake (ratio of wild prey biomass consumed to biomass available), the three species together harvested 0.4–30.2% of available prey, with the highest offtake recorded from the location where the carnivores reach very high densities. When re-examined in the context of prey availability and offtake, locations with low wild prey availability showed spatial avoidance and temporal overlap among the carnivore pairs, and locations with high wild prey availability showed spatial overlap and temporal segregation. Based on these observations, we make predictions for 40 Protected Areas in India where temporally synchronous estimates of predator and prey densities are available. We expect that low prey availability will lead to higher competition, and in extreme cases, to the complete exclusion of one or more species. In Protected Areas with high prey availability, we expect intraguild coexistence and conspecific competition among carnivores, with spill-over to forest-edge habitats and subsequent prey-switching to livestock. We stress that dhole–leopard–tiger co-occurrence across their range is facilitated through an intricate yet fragile balance between prey availability, and intraguild and conspecific competition. Data gaps and limitations notwithstanding, our study shows how insights from fundamental ecology can be of immense utility for applied aspects like large predator conservation and management of human–carnivore interactions. Our findings also highlight potential avenues for future research on tropical carnivores that can broaden current understanding of intraguild competition in forest systems of Asia and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号