首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Red‐headed Wood Pigeon Columba janthina nitens is endemic to the Ogasawara Islands, an oceanic island chain located 1000 km south of the main islands of Japan. The subspecies is at high risk of extinction because of its small population size and restricted habitat range. We undertook genetic analyses of this pigeon using sequences of a portion of the mitochondrial control region and five microsatellite markers to estimate the genetic characteristics of two wild populations from the Bonin and Volcano Islands, as well as one captive breeding population. The genetic diversity of the wild individuals was exceptionally low in both the mitochondria (nucleotide diversity = 0.00105) and at the microsatellite (3.2 alleles per locus and HE = 0.12) loci. Higher numbers of microsatellite genotypes were observed in the Volcano Islands population than in the Bonin Islands population, which may be because of the relatively low impact of human disturbance. The most common mitochondrial haplotypes and microsatellite alleles observed in the two wild populations were completely fixed in the captive population. Our results suggest that the genetic diversity of the captive population needs to be increased. However, introduction of a wild individual into a captive population can lead to a decreased genetic diversity in the wild population and therefore should be done with caution. The genetic differentiation between the Bonin and the Volcano island groups was low, and the populations of the two island groups should be regarded as a single evolutionarily significant unit. However, special consideration is required for habitat conservation in the Volcano Islands, which may be functioning as a sanctuary for the Red‐headed Wood Pigeon. For the long‐term conservation of threatened bird species that live on remote oceanic islands, determination of management units considering gene flow caused by their flying capacity and maintenance of genetically suitable wild and captive populations are essential.  相似文献   

2.
3.
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density‐dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density‐dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange‐crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density‐dependent nest predation can underlie the relationship between population density and fecundity even in a high‐density, insular population where intraspecific competition should be strong.  相似文献   

4.
5.
6.
7.
Extreme and remote environments provide useful settings to test ideas about the ecological and evolutionary drivers of biological diversity. In the sub‐Antarctic, isolation by geographic, geological and glaciological processes has long been thought to underpin patterns in the region's terrestrial and marine diversity. Molecular studies using increasingly high‐resolution data are, however, challenging this perspective, demonstrating that many taxa disperse among distant sub‐Antarctic landmasses. Here, we reconsider connectivity in the sub‐Antarctic region, identifying which taxa are relatively isolated, which are well connected, and the scales across which this connectivity occurs in both terrestrial and marine systems. Although many organisms show evidence of occasional long‐distance, trans‐oceanic dispersal, these events are often insufficient to maintain gene flow across the region. Species that do show evidence of connectivity across large distances include both active dispersers and more sedentary species. Overall, connectivity patterns in the sub‐Antarctic at intra‐ and inter‐island scales are highly complex, influenced by life‐history traits and local dynamics such as relative dispersal capacity and propagule pressure, natal philopatry, feeding associations, the extent of human exploitation, past climate cycles, contemporary climate, and physical barriers to movement. An increasing use of molecular data – particularly genomic data sets that can reveal fine‐scale patterns – and more effective international collaboration and communication that facilitates integration of data from across the sub‐Antarctic, are providing fresh insights into the processes driving patterns of diversity in the region. These insights offer a platform for assessing the ways in which changing dispersal mechanisms, such as through increasing human activity and changes to wind and ocean circulation, may alter sub‐Antarctic biodiversity patterns in the future.  相似文献   

8.
The advent of molecular genetics has brought invaluable information, which is now routinely used by anthropologists in their attempt to reconstruct our demographic past. Since mitochondrial DNA loci are much more similar between populations than are Y-chromosome loci, it is suggested that women had a much higher migration rate than men throughout history. Based on an examination of intergenerational migration patterns in three large demographic databases, we bring this inference into question. In some early Canadian settlements (St. Lawrence Valley and Saguenay), and in the former Krummh?rn region of northwest Germany, men whose fathers were migrants were more likely to migrate, while the migration probability of women was largely independent of that of their mothers. As a result, men's movements were less effective in preventing genetic differentiation between populations than women's movements. In order to account for the impact of transmission, we propose a slight modification of Wright's island model. We also address the relevance of this model at the regional scale, and we discuss the supporting historical and anthropological literature. We conclude that the widespread patrilocal rules of postmarital residence have generated both a higher female migration rate and a patrilineal dependency in the propensity to migrate.  相似文献   

9.
10.
I derive the equilibrium values of sex-specific FST parameters, in an island model for a dioecious species with sex-biased dispersal and binomial distribution of family size before dispersal (as assumed in a Wright-Fisher population). I show that FST may take different values among males and among females whenever dispersal is a trait conditioned on gender. This has not always been recognized, because some models assumed that genes are sampled before dispersal. In particular, the ratios of sex-specific FST parameters evaluated after dispersal over FST evaluated before dispersal are simple functions of sex-specific dispersal rates. Therefore, a simple moment-based estimator of sex-specific dispersal rate is proposed. This method is based on the comparison of FST estimated before and after dispersal and assumes equilibrium between migration and drift. I evaluate this method through stochastic simulations for a range of sex-specific dispersal rates and sampling effort (sample size, number of loci scored).  相似文献   

11.
1. We calculate the yearly numbers of bird species immigrating to – and becoming extinct on – 13 small islands of the British Isles, using a long and relatively complete data record.
2. We estimate the size of the colonist pool for each island using four methods.
3. We assume that immigrations and extinctions are distributed binomially, and use a maximum likelihood method to fit concave immigration and extinction functions to the data, utilizing all four species pool estimates.
4. Extinction rates increase significantly and consistently with increasing numbers of breeding species on each island. For nine of the 13 islands the extinction functions are significantly concave.
5. Immigration rates decrease consistently with increasing numbers of breeding species on each island. Seven islands have significantly concave immigration functions.
6. Immigration rates and extinction rates decline consistently, but not significantly, with island distance and island size, respectively. The number of breeding species does not always reflect the number of species likely to have reached an island. Moreover, some species may choose not to breed when their chance of extinction is high. These factors, plus the modest range of island areas and distances in our database, reduce our chances of finding the theoretically predicted effects of area and distance on extinction and immigration rates.  相似文献   

12.
Metacommunity theory is a convenient framework in which to investigate how local communities linked by dispersal influence patterns of species distribution and abundance across large spatial scales. For organisms with complex life cycles, such as mosquitoes, different pressures are expected to act on communities due to behavioral and ecological partitioning of life stages. Adult females select habitats for oviposition, and resulting offspring are confined to that habitat until reaching adult stages capable of flight; outside‐container effects (OCE) (i.e., spatial factors) are thus expected to act more strongly on species distributions as a function of adult dispersal capability, which should be limited by geographic distances between sites. However, larval community dynamics within a habitat are influenced by inside‐container effects (ICE), mainly interactions with conspecifics and heterospecifics (e.g., through effects of competition and predation). We used a field experiment in a mainland‐island scenario to assess whether environmental, spatial, and temporal factors influence mosquito prey and predator distributions and abundances across spatial scales: within‐site, between‐site, and mainland‐island. We also evaluated whether predator abundances inside containers play a stronger role in shaping mosquito prey community structure than do OCE (e.g., spatial and environmental factors). Temporal influence was more important for predators than for prey mosquito community structure, and the changes in prey mosquito species composition over time appear to be driven by changes in predator abundances. There was a negligible effect of spatial and environmental factors on mosquito community structure, and temporal effects on mosquito abundances and distributions appear to be driven by changes in abundance of the dominant predator, perhaps because ICE are stronger than OCE due to larval habitat restriction, or because adult dispersal is not limited at the chosen spatial scales.  相似文献   

13.
To understand empirical patterns of phenotypic plasticity, we need to explore the complexities of environmental heterogeneity and how it interacts with cue reliability. I consider both temporal and spatial variation separately and in combination, the timing of temporal variation relative to development, the timing of movement relative to selection, and two different patterns of movement: stepping‐stone and island. Among‐generation temporal heterogeneity favors plasticity, while within‐generation heterogeneity can result in cue unreliability. In general, spatial variation more strongly favors plasticity than temporal variation, and island migration more strongly favors plasticity than stepping‐stone migration. Negative correlations among environments between the time of development and selection can result in seemingly maladaptive reaction norms. The effects of higher dispersal rates depend on the life history stage when dispersal occurs and the pattern of environmental heterogeneity. Thus, patterns of environmental heterogeneity can be complex and can interact in unforeseen ways to affect cue reliability. Proper interpretation of patterns of trait plasticity requires consideration of the ecology and biology of the organism. More information on actual cue reliability and the ecological and developmental context of trait plasticity is needed.  相似文献   

14.
A compilation of historical and recent collections and observations of shore fishes yielded 154 recorded species for Trindade and 67 for Martin Vaz. Twelve taxa, mostly small cryptobenthic species with limited dispersal capabilities and low ecological amplitude, are endemic to this insular complex. In several cases, the seamounts of the Vitória‐Trindade Chain appear to have acted as stepping stones between the mainland and islands in periods of low sea level.  相似文献   

15.
16.
17.
Given that 29% of seabird species are threatened with extinction, protecting seabird colonies on offshore islands is a global conservation priority. Seabirds are vulnerable to non‐native predator invasions, which reduce or eliminate colonies. Accordingly, conservation efforts have focused on predator eradication. However, affected populations are often left to passively recover following eradications. Although seabirds are highly mobile, their life history traits such as philopatry can limit passive recolonization of newly predator‐free habitat. In such cases, seabird colonies can potentially be re‐instated with active restoration via chick translocations or social attraction methods, which can be risky and expensive. We used biogeographic and species‐specific behavioral data in the Hauraki Gulf, New Zealand, a global hotspot of seabird diversity and predator eradications, to illustrate the use of geographic information systems multi‐criteria decision analysis to prioritize islands for active seabird restoration. We identified nine islands with low observed passive recovery of seabirds posteradication over a 50‐year timeframe, and classified these as sites where active seabird management could be prioritized. Such spatially explicit tools are flexible, allowing for managers to choose case‐specific criteria such as time, funding, and goals constrained for their conservation needs. Furthermore, this flexibility can also be applied to threatened species management by customizing the decision criteria for individual species' capacity to passively recolonize islands. On islands with complex restoration challenges, decision tools that help island restoration practitioners decide whether active seabird management should be paired with eradication can optimize restoration outcomes and ecosystem recovery.  相似文献   

18.
Model‐based global projections of future land‐use and land‐cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global‐scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.  相似文献   

19.
Identifying the mechanisms underlying invasive plant establishment and native plant decline remains a central goal in ecology, particularly for biodiversity hotspots such as islands. We re‐analyzed a previously published meta‐dataset to test the prediction that neighbor effects are stronger on islands vs. continents because island plants are weaker competitors. Although we detected marginally stronger neighbor effects on islands than continents, this was due, at least in part, to stronger competition among native species. An absence of studies testing neighbor effects between native vs. invasive plants on islands prevents a rigorous test for competition effects on islands, highlighting an important knowledge gap.  相似文献   

20.
Translocation of endangered species to habitats where exotic predators have been removed is now a common conservation practice around the world. Many of these translocated populations have thrived, and they are often used as sources for the harvesting of individuals for translocations to sites where exotic predators still exist, albeit at reduced densities. This study investigates how isolation from exotic predators affects the ability of individuals to recognize such predators using the North Island robin (Petroica longipes) as a model. The study was carried out in three robin populations in the North Island, New Zealand: a translocated population on Tiritiri Matangi Island, where exotic mammalian predators are absent; a population reintroduced from Tiritiri Matangi Island to Wenderholm Regional Park, a mainland site where these mammals are controlled to low densities; and a mainland population at Benneydale where exotic predatory mammals are common. The response intensity of robins to a model stoat was high at Benneydale and low at Tiritiri Matangi and Wenderholm. This result indicates that isolation from mammalian predators on Tiritiri Matangi has suppressed the ability of North Island robins to recognize these predators. It is possible that the low predatory mammal densities at Wenderholm have reduced robin contact with stoats, therefore reduced the opportunity for robins to learn to recognize stoats. Thus, translocation of individuals from populations without predators to places where key predators still exist could be unsuccessful if translocated individuals fail to perform appropriate anti‐predator behaviours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号