首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the short-term regulation of the phosphorylation of the mid-sized neurofilament subunit (NF-M) by kinases which were activated in rat pheochromocytoma (PC12) cells by nerve growth factor (NGF) and/or 12-O-tetradecanoylphorbol 13-acetate (TPA). We found that NGF and TPA, alone or in combination, increased (a) the incorporation of [32P]Pi into NF-M and (b) the rate of conversion of NF-M from a poorly phosphorylated to a more highly phosphorylated form. This was not due to increased synthesis of NF-M, because NGF alone did not increase NF-M synthesis and TPA alone or TPA and NGF together inhibited the synthesis of NF-M. Further, an increase in calcium/phospholipid-dependent kinase (PKC) activity resulting from the treatment of PC12 cells with NGF and TPA was observed concomitant with the increased phosphorylation of NF-M. This PKC activity was determined to be derived from the PKC alpha and PKC beta isozymes. Finally, when PC12 cells were rendered PKC-deficient by treatment with 1 muM TPA for 24 h, NGF maintained the ability to induce an increase in NF-M phosphorylation, though not to the level attained in cells which were not PKC-deficient. These data suggest that NGF with or without TPA stimulates NF-M phosphorylation as a result of a complex series of events which include PKC-independent and PKC-dependent pathways.  相似文献   

2.
蛋白激酶C在血小板聚集中的作用   总被引:4,自引:0,他引:4  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

3.
Effect of Brain Ischemia on Protein Kinase C   总被引:7,自引:0,他引:7  
We examined the influence of brain ischemia on the activity and subcellular distribution of protein kinase C (PKC). Two different models of ischemic brain injury were used: postdecapitative ischemia in rat forebrain and transient (6-min) cerebral ischemia in gerbil hippocampus. In the rat forebrain model, at 5 and 15 min postdecapitation there was a steady decrease of total PKC activity to 60% of control values. This decrease occurred without changes in the proportion of the particulate to the soluble enzyme pools. Isolated rat brain membranes also exhibited a concomitant decrease of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding with an apparent increase of the ligand affinity to the postischemic membranes. On the other hand, the ischemic gerbil hippocampus model displayed a 40% decrease of total PKC activity, which was accompanied by a relative increase of PKC activity in its membrane-bound form. This resulted in an increase in the membrane/total activity ratio, indicating a possible enzyme translocation from cytosol to the membranes after ischemia. Moreover, after 1 day of recovery, a statistically significant enhancement of membrane-bound PKC activity resulted in a further increase of its relative activity up to 162% of control values. In vitro experiments using a synaptoneurosomal particulate fraction were performed to clarify the mechanism of the rapid PKC inhibition observed in cerebral tissue after ischemia. These experiments showed a progressive, Ca(2+)-dependent, antiprotease-insensitive down-regulation of PKC during incubation. This down-regulation was significantly enhanced by prior phorbol (PDBu) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Characterization of Protein Kinase C in Photoreceptor Outer Segments   总被引:1,自引:0,他引:1  
Abstract: Protein kinase C (PKC) has been implicated in regulating several proteins involved in phototransduction. This contribution characterizes the biochemical and immunological properties of PKC isozyme(s) in the photoreceptor outer segment. Activity measurements revealed that at least 85% of the PKC in this specialized compartment belongs to the subfamily of Ca2+-regulated (conventional) PKCs. Of the known Ca2+-dependent PKCs, only PKCα was immunodetected by western blot analysis of rod outer segment proteins. However, the ratio of immunoreactivity to enzyme activity for rod outer segment PKC was no more than 40% of that for brain PKC, using antibodies against conventional PKCs. Therefore, at least half the Ca2+/lipid-stimulated activity in rod outer segment preparations cannot be accounted for by the known isozymes, suggesting the presence of a previously uncharacterized isozyme. Despite extensive tests using a variety of antibodies against different domains of PKCα, PKCα could not be detected in rod outer segments by immunofluorescence of retinal sections. In summary, our data reveal that most of the PKC in photoreceptor outer segments is of the conventional type and that most, if not all, of this conventional PKC activity comes from a novel isozyme(s).  相似文献   

5.
Abstract: Treatment of human embryonic kidney cells (HEK 293 cells) expressing the mouse glycine transporter 1 (GLYT1b) with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) decreased specific [3H]glycine uptake. This down-regulation resulted from a reduction of the maximal transport rate and was blocked by the PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporine. The inhibitory effect of PMA treatment was also observed after removing all five predicted phosphorylation sites for PKC in GLYT1b by site-directed mutagenesis. These data indicate that glycine transport by GLYT1b is modulated by PKC activation; however, this regulation may involve indirect phosphorylation mechanisms.  相似文献   

6.
Abstract: Activation of tyrosine kinases is established as an important mechanism for controlling growth cone motility and neurite outgrowth. We have tested the effects of a range of tyrosine kinase inhibitors on neurite outgrowth from postnatal day 4 cerebellar granule cells cultured over confluent monolayers of 3T3 fibroblasts. The only agent that had any effect was herbimycin A, which stimulated neurite outgrowth. The response is shown to be attributable to a direct effect of this tyrosine kinase inhibitor on neurones. The neurite outgrowth response to herbimycin A was inhibited by two other tyrosine kinase inhibitors, which on their own did not affect neurite outgrowth. The data suggest that the response to herbimycin A reflects either a direct or indirect activation of one or more protein tyrosine kinases. Independent signalling events downstream from tyrosine kinase activation underlying the neurite outgrowth response to herbimycin A include increased activity of protein kinase C and calcium influx into neurones through both N-and L-type calcium channels.  相似文献   

7.
Abstract: Nerve growth factor (NGF) increases arachidonic acid (AA) release by PC12 pheochromocytoma cells. To explore the role of protein kinase C (PKC) in this action of NGF, PKC was down-regulated by long-term treatment of the cells with phorbol 12-myristate 13-acetate (PMA). Such prolonged exposure to PMA (1 µ M ) resulted in the inhibition of NGF-induced AA release. Moreover, pretreatment of PC12 cells with the protein kinase inhibitor staurosporine or with calphostin C, a specific inhibitor of PKC, also blocks the increase of AA release induced by NGF. These data, as well as that PMA alone can induce AA release in PC12 cells, suggest that PKC is necessary for NGF-induced AA release. Immunoblot analysis of whole cell lysates by using antibodies against various PKC isoforms revealed that our PC12 cells contained PKCs α, δ, ε, and ζ. PMA down-regulation depleted PKCs α, δ, and ε, and partially depleted ζ. To see which isoform was involved in NGF-induced AA release, an isoform-specific PKC inhibitor was used. GO 6976, a compound that inhibits PKCs α and β specifically, blocked NGF-induced AA release. In addition, thymeleatoxin, a specific activator of PKCs α, β, and γ, induced AA release from PC12 cells in amounts comparable with those seen with NGF. Taken together, these data suggest that PKC α plays a role in NGF-induced AA release.  相似文献   

8.
Abstract: An exposure to 12- O -tetradecanoylphorbol 13-acetate (TPA) at 20 n M for as short as 30 min was sufficient to elicit neurite outgrowth from explanted chick embryonic sensory ganglia. Attachment of the ganglia to the collagencoated substratum during exposure to TPA was essential for subsequent neurite outgrowth. Pulse-labeling with [35S]-methionine indicated no significant difference in protein synthesis between control and TPA-treated ganglia. In vitro phosphorylation assay revealed a prominent protein kinase C substrate with an apparent molecular mass of 66,000 dalton (66 kDa) in chick embryo ganglia extracts. Treatment of intact ganglia with TPA for 30 min also specifically stimulated the phosphorylation of the same protein. When staurosporine, a potent inhibitor of protein kinase C, was present during TPA treatment, both neurite outgrowth and the phosphorylation of the 66-kDa protein were blocked. Biochemical analysis of the phosphorylated 66-kDa protein indicated that (1) phosphorylation was only in serine residue, (2) the pI value was 4.5, (3) after V8 protease digestion, two phosphorylated peptide fragments, 6.0 and 7.5 kDa in size, were produced, and (4) it cross-reacted with an antiserum raised against a 66-kDa neurofilament subunit from rat spinal cord. These results suggest that early activation of protein kinase C and the phosphorylation of the 66-kDa protein may be involved in neuritogenesis.  相似文献   

9.
Staurosporine, which has a structure similar to that of K-252a, a potent protein kinase inhibitor that blocks nerve growth factor (NGF) action in PC12 and PC12h cells, is also known as a potent inhibitor of several protein kinases. This study shows that in PC12h cells staurosporine has a dual action: at lower concentrations than that required by K-252a, it is an inhibitor of NGF induction of neurite formation and of changes in the phosphorylation of specific proteins, whereas at concentrations higher than that required to inhibit NGF-induced neurite outgrowth, it rapidly enhances outgrowth by itself.  相似文献   

10.
Abstract: N -Methyl- d -aspartate (NMDA) receptors mediate increases in intracellular calcium that can be modulated by protein kinase C (PKC). As PKC modulation of NMDA receptors in neurons is complex, we studied the effects of PKC activation on recombinant NMDA receptor-mediated calcium rises in a nonneuronal mammalian cell line, human embryonic kidney 293 (HEK-293). Phorbol 12-myristate 13-acetate (PMA) pretreatment of HEK-293 cells enhanced or suppressed NMDA receptor-mediated calcium rises based on the NMDA receptor subunit composition. NR2A or NR2B, in combination with NR1011, conveyed enhancement whereas NR2C and NR2D conveyed suppression. The PKC inhibitor bisindolylmaleimide blocked each of these effects. The region on NR2A that conveyed enhancement localized to a discrete segment of the C terminus distal to the portion of NR2C that is homologous to NR2A. Calcium-45 accumulation, but not intracellular calcium store depletion, matched PMA effects on NMDA receptor-mediated calcium changes, suggesting that these effects were not due to effects on intracellular calcium stores. The suppression of intracellular calcium transients seen with NR2C was eliminated when combined with NR1 splice variants lacking C-terminal cassette 1. Thus, the intracellular calcium effects of PMA were distinguishable based on both the NR1 splice variant and the NR2 subunit type that were expressed. Such differential effects resemble the diversity of PKC effects on NMDA receptors in neurons.  相似文献   

11.
Our previous studies showed that dopamine inhibits Na+,K+-ATPase activity in acutely dissociated neurons from striatum. In the present study, we have found that in this preparation, dopamine inhibited significantly (by approximately 25%) the activity of the alpha3 and/or alpha2 isoforms, but not the alpha1 isoform, of Na+,K+-ATPase. Dopamine, via D1 receptors, activates cyclic AMP-dependent protein kinase (PKA) in striatal neurons. Dopamine is also known to activate the calcium- and phospholipid-dependent protein kinase (PKC) in a number of different cell types. The PKC activator phorbol 12,13-dibutyrate reduced the activity of Na+,K+-ATPase alpha3 and/or alpha2 isoforms (by approximately 30%) as well as the alpha1 isoform (by approximately 15%). However, dopamine-mediated inhibition of Na+,K+-ATPase activity was unaffected by calphostin C, a PKC inhibitor. Dopamine did not affect the phosphorylation of Na+,K+-ATPase isoforms at the PKA-dependent phosphorylation site. Phorbol ester treatment did not alter the phosphorylation of alpha2 or alpha3 isoforms of Na+,K+-ATPase in neostriatal neurons but did increase the phosphorylation of the alpha1 isoform. Thus, in rat neostriatal neurons, treatment with either dopamine or PKC activators results in inhibition of the activity of specific (alpha3 and/or alpha2) isoforms of Na+,K+-ATPase, but this is not apparently mediated through direct phosphorylation of the enzyme. In addition, PKC is unlikely to mediate inhibition of rat Na+,K+-ATPase activity by dopamine in neostriatal neurons.  相似文献   

12.
Calcium-dependent phospholipid-sensitive protein kinase [protein kinase C (PKC)] was partially purified from the carp (Cyprinus carpio) retina through DE 52 ion exchange and Cellulofine gel filtration chromatography. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) activated PKC in the nanomolar range. A major 38-kDa protein in the retinal supernatants (105,000 g) was phosphorylated in vitro by PKC during a short period (3 min). Other phosphoproteins also appeared during a further prolonged period (greater than 15 min). Rod-bipolar and dopamine (DA) interplexiform cells in the fish retina were immunoreactive to a monoclonal antibody to PKC (alpha/beta-subtype). The PKC antibody recognized a 78-kDa native PKC enzyme by means of an immunoblotting method. Subsequently, the effects of two kinds of PKC activators were investigated on [3H]DA release from retinal cell fractions containing DA cells that had been preloaded with [3H]DA. A phorbol ester (TPA) induced a calcium- and dose-dependent [3H]DA release during a short period (2 min), with the minimal effective dose being approximately 1 nM. Other phorbols having no tumor-promoting activity, such as 4 beta-phorbol and 4 alpha-phorbol 12,13-didecanoate, were ineffective on [3H]DA release. A synthetic diacylglycerol [1-oleoyl-2-acetylglycerol (OAG)], which is an endogenous PKC activator, was also able to induce a significant release of [3H]DA. Furthermore, TPA was found to release endogenous DA from isolated fish retina by a highly sensitive HPLC with electrochemical detection method. The OAG- or TPA-induced [3H]DA or DA release was completely blocked by inhibitors of PKC, such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) and staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Abstract: The injection of phorbol esters into the eyes of dark-adapted teleost fish can mimic light effects in the retina and induces corresponding synaptic plasticity of horizontal cells (HCs). It is therefore very likely that protein kinase C (PKC) mediates light-induced synaptic plasticity. In the present study, we investigated the distribution of PKC, the phorbol ester receptor, in isolated HCs and in the whole retina by using tritiated phorbol 12,13-dibutyrate ([3H]PDBu). The binding characteristics analyzed for HC homogenates and retinal homogenates revealed that [3H]PDBu binding is time dependent, specific, saturable, and reversible. Binding sites in HCs displayed a dissociation constant of 11.5 n M and a total number of 2.8 pmol/mg of protein. Autoradiography revealed that [3H]PDBu labeling is present in all retinal layers, including HCs, where it is associated with the somata. Furthermore, the treatment with PDBu strongly affected the endogenous phosphorylation of several membrane, cytosolic, and HC proteins and led to PKC activation as measured by H1 histone phosphorylation. In HCs, the treatment with PDBu in particular affected the amount of 32P incorporated into a group of phosphoproteins (68, 56/58, 47, 28, and 15 kDa) that were recently shown to be affected by light adaptation. These proteins might therefore be considered as important components of the observed morphological and physiological synaptic plasticity of HCs in the course of light adaptation.  相似文献   

15.
A potential role of the protein kinase C (PKC) system in differentiation of human neuroblastoma cell line LA-N-5 was investigated. It was found that neurite outgrowth induced by 12-O-tetradecanoylphorbol 13-acetate (TPA, 81 nM) was associated with a down-regulation of PKC as determined independently by immunocytochemistry, immunoblot, and enzyme activity assay. Down-regulation of PKC in cells induced to differentiate by retinoic acid (1 microM) was less pronounced, whereas it was undetected in cells induced to differentiate by nerve growth factor (100 ng/ml). The in vitro phosphorylation of an 80-kilodalton protein present in control LA-N-5 cells or in cells treated with TPA, retinoic acid, or nerve growth factor for 1 day decreased to various extents at days 4 or 7 concomitant with neuritogenesis. Pretreatment of LA-N-5 cells with a high concentration (1 microM) of TPA to deplete cellular PKC rendered the cells unresponsive to the differentiating effect of the agents. It was observed that CHP-100 cells, another human neuroblastoma line shown to be resistant to differentiation induced by the agents, had a reduced PKC level and the amount of in vitro phosphorylation of the 80-kilodalton protein was greatly reduced in control cells and remained relatively unchanged when the cells were treated with the agents for up to 7 days. The present studies suggested that PKC and its 80-kilodalton substrate protein were likely involved in initiation and/or progression of LA-N-5 cell differentiation induced by TPA and that separate PKC-independent pathways might also be involved in the differentiating effect of retinoic acid or nerve growth factor.  相似文献   

16.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich histone phosphorylation assay. Attempts to uncover latent activity in the particulate fraction were unsuccessful. Approximately 75% of the supernatant protein kinase C activity could be translocated to the particulate fraction by prior treatment (30-60 min) of the cultures with 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not with 4 alpha-phorbol, an inactive phorbol ester. Investigation of endogenous substrates for protein kinase C showed that TPA treatment brought about an increase in phosphorylation in membrane proteins and a decrease in phosphorylation of supernatant proteins. These findings indicate that the distribution of protein kinase C in astrocytes differs substantially from that in whole brain tissue, where approximately two-thirds of the protein kinase C activity is associated with the particulate fraction. Because protein kinase C is concentrated in the cytosol of astrocytes and most of this activity can be translocated to membranes, astrocytes may be particularly well-suited to respond to signals that activate phosphoinositide-linked receptors in brain.  相似文献   

17.
Abstract: A single dose of 0.25 ng of tetanus toxin (TeTx), equivalent to ∼5 minimal lethal doses, injected intracerebrally to 1-day-old rats, caused translocation, i.e., activation, of Ca2+-phosphatidylserine-dependent protein kinase C (PKC) from the cytosolic to the membrane compartment within 1 h. Six hours after treatment with the toxin, a 40–50% reduction in the total brain PKC (cytosolic plus membrane) activity was noticed. GT1b (2 μg per brain) ganglioside, a putative receptor for TeTx, completely prevented enzyme translocation when injected intracerebrally 30 min before toxin administration and abolished down-regulation after 6 h from the time of toxin injection. GM1 (2 μg per brain), a ganglioside of lesser affinity for TeTx, produced by itself a 20–30% reduction of the total PKC activity and did not reverse TeTx-induced PKC down-regulation after 6 h. 12- O -Tetradecanoylphorbol 13-acetate (TPA) phorbol ester, administered at a concentration of 5 × 10−5 M , caused activation and down-regulation of the enzyme, although with several orders of magnitude lesser potency. GT1b prevented the TPA-induced down-regulation.  相似文献   

18.
We have established a subline of PC12 cells (PC12D) that extend neurites very quickly in response not only to nerve growth factor (NGF) but also to cyclic AMP (cAMP) in the same way as primed PC12 cells (NGF-pretreated cells). When phosphorylation of brain microtubule proteins by extracts of these cells was monitored, two distinct kinase activities were found to be increased [from three- to eightfold in terms of phosphorylation of microtubule-associated protein (MAP) 2] by a brief exposure of cells to NGF or to dibutyryl cAMP(dbcAMP). The effect of the combined stimulation with both NGF and dbcAMP was additive in terms of the phosphorylation of MAP2. The apparent molecular mass of the kinase activated by dbcAMP was 40 kDa, and this kinase appears to be cAMP-dependent protein kinase. The molecular mass of the kinase activated by NGF was 50 kDa. The latter was activated to a measurable extent after 5 min of exposure of cells to NGF; it required Mg2+ for activity but not Mn2+ or Ca2+. This kinase appears to be distinct from previously reported kinases in PC12 cells, and it has been designated as NGF-dependent MAP kinase, although its physiological substrates are not known at present. An inhibitor of protein kinases, K-252a, selectively inhibited the outgrowth of neurites from PC12D cells in response to NGF but not to dbcAMP. When this inhibitor was added to the incubation medium of cells exposed simultaneously to NGF or dbcAMP, the increase in activity of the NGF-dependent MAP kinase was selectively abolished. We isolated several mutant clones of PC12D cells that were deficient in the ability to induce neurites in response to either of the two stimulators. In these variant cells, the activity of the relevant protein kinase was decreased, in parallel with the deficiency in the neurite response to NGF or dbcAMP. These observations suggest that the NGF-dependent MAP kinase may play an important role in the outgrowth of neurites from PC12 cells in response to NGF.  相似文献   

19.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

20.
Protein kinase C (PKC), a calcium- and phospholipid-dependent kinase, is highly enriched in rat brain, where it may function in signal transduction processes. We purified rat brain PKC to homogeneity by a three-column procedure of diethylaminoethyl-cellulose, phenyl-Sepharose, and protamine-agarose with a yield of 16% and a final specific activity of 9,600 pmol of [3H]phorbol-12,13-dibutyrate bound/mg of protein. The pure protein consisted of a doublet of 80 and 78 kilodaltons. Rabbit antibodies prepared against a beta-type PKC synthetic peptide sequence (RAKIGQGTKAPEEKTANTISK) showed high specificity and sensitivity for PKC and recognized only the 78-kilodalton form of PKC. Micropunches (300 microns in diameter) of rat hippocampal subregions were solubilized in sodium dodecyl sulfate (SDS) sample buffer, electrophoresed on SDS-10% polyacrylamide gels, and transferred to nitrocellulose. PKC was visualized by 125I-protein A autoradiography and quantified by densitometry. The highest concentrations of PKC were found in the CA1 pyramidal cell layer (0.43 +/- 0.04 OD), with the lowest amounts in the CA3 and CA4 pyramidal cell layers (0.11 +/- 0.02 and 0.085 +/- 0.006 OD, respectively). These results demonstrate a simple way of preparing antibodies against domains of PKC. We also describe a procedure for quantifying the relative amounts of PKC in discrete brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号