首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allene oxide cyclase: a new enzyme in plant lipid metabolism   总被引:10,自引:0,他引:10  
The mechanism of the biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA) from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid in preparations of corn (Zea mays L.) was studied. In the initial reaction the hydroperoxide was converted into an unstable allene oxide, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, by action of a particle-bound hydroperoxide dehydrase. A new enzyme, allene oxide cyclase, catalyzed subsequent cyclization of allene oxide into 9(S),13(S)-12-oxo-PDA. In addition, because of its chemical instability, the allene oxide underwent competing nonenzymatic reactions such as hydrolysis into alpha- and gamma-ketol derivatives as well as spontaneous cyclization into racemic 12-oxo-PDA. (+/-)-cis-12,13-Epoxy-9(Z)-octadecenoic acid and (+/-)-cis-12,13-epoxy-9(Z),15(Z)-octadecadienoic acid, in which the epoxy group was located in the same position as in the allene oxide substrate, served as potent inhibitors of corn allene oxide cyclase. On the other hand, the isomeric (+/-)-cis-9,10-epoxy-12(Z)-octadecenoic acid had little inhibitory effect. Allene oxide cyclase was present in the soluble fraction of corn homogenate and had a molecular weight of about 45,000 as judged by gel filtration. The enzyme activity was detected in several plant tissues, the highest levels being observed in potato tubers and in leaves of spinach and white cabbage.  相似文献   

2.
Allene oxide, (9Z,11E)-12,13-epoxy-9,11-octadecadienoic acid (12,13-EOD), was prepared by incubation of linoleic acid (13S)-hydroperoxide with flaxseed allene oxide synthase (AOS) and purified (as methyl ester) by low temperature HPLC. Identification of pure 12,13-EOD was substantiated by its UV and (1)H NMR spectra and by GC-MS data for its methanol trapping product. The methyl ester of 12,13-EOD (but not the free carboxylic acid) is slowly cyclized in hexane solution, affording a novel cyclopentenone cis-12-oxo-10-phytoenoic acid. Free carboxylic form of 12,13-EOD does not cyclize due to the exceeding formation of macrolactone (9Z)-12-oxo-9-octadecen-11-olide. The spontaneous cyclization of pure natural allene oxide (12,13-EOD) into cis-cyclopentenone have been observed first time.  相似文献   

3.
Allene oxide cyclase (AOC; EC 5.3.99.6) catalyzes the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid to 12-oxo- 10,15(Z)-phytodienoic acid, the precursor of jasmonic acid (JA). This soluble enzyme was purified 2000-fold from dry corn (Zea mays L.) kernels to apparent homogeneity. The dimeric protein has a molecular mass of 47 kD. Allene oxide cyclase activity was not affected by divalent ions and was not feedback-regulated by its product, 12-oxo-l0,15(Z)-phytodienoic acid, or by JA. ([plus or minus])-cis- 12,13-Epoxy-9(Z)-octadecenoic acid, a substrate analog, strongly inhibited the enzyme, with 50% inhibition at 20 [mu]M. Modification of the inhibitor, such as methylation of the carboxyl group or a shift in the position of the epoxy group, abolished the inhibitory effect, indicating that both structural elements and their position are essential for binding to AOC. Nonsteroidal anti-inflammatory drugs, which are often used to interfere with JA biosynthesis, did not influence AOC activity. The purified enzyme catalyzed the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid derived from linolenic acid, but not that of 12,13(S)-epoxy-9(Z),11- octadecadienoic acid derived from linoleic acid.  相似文献   

4.
Allene oxide cyclase (EC ) catalyzes the stereospecific cyclization of an unstable allene oxide to (9S,13S)-12-oxo-(10,15Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This dimeric enzyme has previously been purified, and two almost identical N-terminal peptides were found, suggesting allene oxide cyclase to be a homodimeric protein. Furthermore, the native protein was N-terminally processed. Using degenerate primers, a polymerase chain reaction fragment could be generated from tomato, which was further used to isolate a full-length cDNA clone of 1 kilobase pair coding for a protein of 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect allene oxide cyclase activity, a 5'-truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxophytodienoic acid formed by the recombinant enzyme revealed exclusive (>99%) formation of the 9S,13S enantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for allene oxide cyclase located on chromosome 2 of tomato. Inspection of the N terminus revealed the presence of a chloroplastic transit peptide, and the location of allene oxide cyclase protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of allene oxide cyclase mRNA was transiently induced after wounding of tomato leaves.  相似文献   

5.
Incubation of linoleic acid with an enzyme preparation from leaves of flax (Linum usitatissimum L.) led to the formation of a divinyl ether fatty acid, i.e. (9Z,11E,1'Z)-12-(1'-hexenyloxy)-9,11-dodecadienoic [(omega5Z)-etheroleic] acid, as well as smaller amounts of 13-hydroxy-9(Z),11(E)-octadecadienoic acid. The 13-hydroperoxide of linoleic acid afforded the same set of products, whereas incubations of alpha-linolenic acid and its 13-hydroperoxide afforded the divinyl ether (9Z,11E,1'Z,3'Z)-12-(1',3'-hexadienyloxy)-9,11-dodecadienoic [(omega5Z)-etherolenic] as the main product. Identification of both divinyl ethers was substantiated by their UV, mass-, (1)H NMR and COSY spectral data. In addition to the 13-lipoxygenase and divinyl ether synthase activities demonstrated by these results, flax leaves also contained allene oxide synthase activity as judged by the presence of endogenously formed (15Z)-cis-12-oxo-10,15-phytodienoic acid in all incubations.  相似文献   

6.
Jasmonates are derived from oxygenated fatty acids (oxylipins) via the octadecanoid pathway and are characterized by a pentacyclic ring structure. They have regulatory functions as signaling molecules in plant development and adaptation to environmental stress. Recently, we solved the structure of allene oxide cyclase 2 (AOC2) of Arabidopsis thaliana, which is, together with the other three AOCs, a key enzyme in the biosynthesis of jasmonates, in that it releases the first cyclic and biologically active metabolite -- 12-oxo-phytodienoic acid (OPDA). On the basis of models for the bound substrate, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, and the product, OPDA, we proposed that a conserved Glu promotes the reaction by anchimeric assistance. According to this hypothesis, the transition state with a pentadienyl carbocation and an oxyanion is stabilized by a strongly bound water molecule and favorable pi-pi interactions with aromatic residues in the cavity. Stereoselectivity results from steric restrictions to the necessary substrate isomerizations imposed by the protein environment. Here, site-directed mutagenesis was used to explore and verify the proposed reaction mechanism. In a comparative analysis of the AOC family from A. thaliana involving enzymatic characterization, in vitro import, and transient expression of AOC-enhanced green fluorescent protein fusion proteins for analysis of subcellular targeting, we demonstrate that all four AOC isoenzymes may contribute to jasmonate biosynthesis, as they are all located in chloroplasts and, in concert with the allene oxide synthase, they are all able to convert 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid into enantiomerically pure cis(+)-OPDA.  相似文献   

7.
One potential biosynthetic route to the prostaglandins involves the participation of lipoxygenase and allene oxide synthase enzymes, giving a hydroxylated allene oxide, which then might cyclize to form prostaglandin A or a close analogue. We have tested a model of this type of transformation using 8-hydroxy-15S-hydroperoxy eicosanoids as substrates for the dehydrase (allene oxide synthase) in flaxseed. Four of these substrates, each with a 9E,11Z,13E-conjugated triene, gave an observable rate of reaction. The two derived from eicosapentaenoic acid reacted more rapidly than the corresponding arachidonic acid analogues. Also, the 8S-hydroxy-15S-hydroperoxy diastereomers reacted more rapidly than their 8R-hydroxy analogues. Products were characterized by high pressure liquid chromatography, UV, gas chromatography-mass specrometry, 1H NMR, and CD. Reaction of the (8S)-hydroxy-(15S)-hydroperoxy-eicosapentaenoic acid gave two alpha-ketols [8S),15-dihydroxy-14-oxoeicosa-5Z,9E,11Z,17Z+ ++-tetraenoic acid and the corresponding 11E isomer in a 2:1 ratio), together with four prostaglandin A3 analogues which differed in the configurations of the side chains. Oxygen 18 labeling fully supported the intermediacy of an allene oxide in the biosynthesis. The corresponding "8R" substrate was converted to the enantiomers of these products plus three 13-hydroxy-14,15-epoxy derivatives. The arachidonate analogues formed the epoxy-hydroxy derivatives, the alpha-ketols, and two prostaglandin A2 analogues with trans configuration of the side chains. These results demonstrate (i) a feasible route of metabolism of lipoxygenase products to hydroxy allene oxide, (ii) the potential for the resulting allene oxide to cyclize to a prostaglandin A analogue, and (iii) the marked influence of the hydroxyl configuration of the rate of reaction and resulting profile of products. Some of these reactions may occur in a natural pathway of prostanoid biosynthesis in corals and other organisms.  相似文献   

8.
Leaves of Glechoma hederacea L. and other Labiatae contain (9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid, (10E,12Z,15Z)-9-oxo-10,12,15-octadecatrienoic acid, (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid and (10E,12Z)-9-oxo-10,12-octadecadienoic acid in a ratio of 71/14/12/3 (by mass), predominantly esterified in the membrane ester lipids. The leaves contain the highest level of these products, whereas only small amounts were found in the stalk and the roots. The chemical structures of these compounds were established by ultraviolet and infrared spectroscopy, by co-chromatography with authentic standards on various types of HPLC columns including chiral-phase HPLC and gas chromatography/mass spectrometry. The stereochemical specificity indicates the enzymatic origin of the products, most probably via a lipoxygenase reaction. Freshly harvested specimens of G. hederacea L. contain only small amounts of hydroxy-polyenoic fatty acids. Air-drying causes a strong increase in the content of free and esterified (9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid. Up to 80% of the hydroxy fatty acids of the total lipid extracts were esterified in the cellular lipids. The data presented indicate that lipoxygenase products occur in the cellular ester lipids of G. hederacea L. and other Labiatae. The results are discussed in the light of a possible involvement of the lipoxygenase pathway in the natural senescence of leaves.  相似文献   

9.
An unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid, was recently identified as the product formed from 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid in the presence of corn (Zea mays L.) hydroperoxide dehydrase (M. Hamberg (1987) Biochim. Biophys. Acta 920, 76-84). The present paper is concerned with the spontaneous decomposition of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in acetonitrile solution. Two major products were isolated and characterized, i.e. macrolactones 12-keto-9(Z)-octadecen-11-olide and 12-keto-9(Z)-octadecen-13-olide.  相似文献   

10.
Plexaura homomalla is a rich natural source of prostaglandins and recent evidence suggest the prostaglandin biosynthesis could occur through a lipoxygenase pathway. We have investigated the metabolism of arachidonic acid in homogenates and acetone powders of the fresh frozen coral. The biosynthesis of natural prostaglandins was not detected. However, we find a prominent 8(R)-lipoxygenase pathway leading to an alpha-ketol, characterized by high pressure liquid chromatography, gas chromatography-mass spectrometry, and NMR as 8-hydroxy, 9-keto-eicosa-5Z, 11Z, 14Z-trienoic acid, and a prostaglandin A-like cyclopentenone identified as 9-oxo-[8, 12-cis]-prosta-5Z, 10, 14Z-trienoic acid. These reactions appear analogous to the transformation of linolenic acid hydroperoxide by "isomerase" and "cyclase" of corn and flaxseed. From analysis of the absolute configurations of the coral products, and from additional stable isotope labeling experiments in H218O and D2O, we deduce that both compounds arise via conversion of 8(R)-HPETE to an 8(R), 9-allene oxide, 8R,9-oxido-eicosa-5Z, 9, 11Z, 14Z-tetraenoic acid. This unstable intermediate undergoes hydrolysis to form the alpha-ketol or cyclization to give the cyclopentenone. Significantly, we find that the prostaglandin-like product is a racemic mixture of cis side chain enantiomers, pointing to its nonenzymatic origin from the allene oxide. The alpha-ketol is formed with partial racemization and inversion of configuration, also compatible with formation in a nonenzymatic reaction. We conclude that the isomerase and cyclase reactions may merely reflect nonenzymatic breakdown of the enzymatically formed allene oxide. The origin of the endogenous (chiral) prostaglandins of the coral may involve an allene oxide intermediate, although the potential for formation of racemic products presents an interesting dilemma regarding its relationship to the natural pathway of biosynthesis.  相似文献   

11.
The methanol extract of Ehretia dicksonii provided (10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-Otetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 microg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13hydroxy-9,11-octadecadienoic acid (5) and (9Z,llE)13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 microg of 63% and 79%, respectively). Compounds 1, 4 ((9Z, 12Z, 14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 microg/ml.  相似文献   

12.
Guava (Psidium guajava) hydroperoxide lyase (HPL) preparations were incubated with [1-(14)C](9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid for 1 min at 0 degrees C, followed by rapid extraction/trimethylsilylation. Analysis of the trimethylsilylated products by gas chromatography-mass spectrometry and radio-high-performance liquid chromatography revealed a single predominant (14)C-labelled compound, identified by its (1)H-nuclear magnetic resonance, ultraviolet and mass spectra as the trimethylsilyl ether/ester of (9Z,11E)-12-hydroxy-9,11-dodecadienoic acid. Longer time incubations afford smaller yield of this enol due to its partial tautomerization into (9Z)-12-oxo-9-dodecenoic acid. The data obtained demonstrate that formation of (9Z)-12-oxo-9-dodecenoic acid in the HPL reaction is preceded by unstable enol oxylipin, and further suggest that hemiacetals are the true products of HPL catalysis.  相似文献   

13.
The trimethylsilyl (TMS) peroxides/esters of the fatty acid hydroperoxides (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD) and (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT) were subjected to gas chromatography-mass spectrometry and products formed by thermal rearrangements were identified. The main products were decadienals and the TMS derivatives of 13-oxo-9,11-tridecadienoic acid, epoxyalcohols, hemiacetals, and ketodienes. Oxy radicals as well as epoxyallylic radicals served as intermediates in the formation of these compounds. The thermal TMS peroxide conversions documented provided biomimetic models for enzymatic conversions of fatty acid hydroperoxides and also offered a method to generate an array of oxylipin derivatives of value as reference compounds in GC-MS studies.  相似文献   

14.
An activity was found in mature soybean seeds (Glycine max L. cv Century) that cleaved 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13S-HPOT) into 13-oxo-9(Z),11(E)-tridecadienoic acid and two isomeric pentenols, 2(Z)-penten-1-ol and 1-penten-3-ol. Isomeric pentene dimers were also produced and were presumably derived from the combination of two pentene radicals. 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid (13S-HPOD) was, by contrast, a poor substrate. Activity with 13S-HPOT increased 24-fold under anaerobic conditions reminiscent of a similar anaerobic promoted reaction of 13S-HPOD catalyzed by lipoxygenase (LOX) in the presence of linoleic acid. However, prior to ion-exchange chromatography, cleavage activity did not require linoleic acid. After separation by gel filtration followed by ion-exchange chromatography, cleavage activity was lost but reappeared in the presence of either linoleic acid or dithiothreitol. Under these conditions cleavage activity was coincident with the activity of types 1 and 2 LOX. LOX inhibitors suppressed the cleavage reaction in a manner similar to inhibition of LOX activity. Heat-generated alkoxyl radicals derived from either 13S-HPOT or 13S-HPOD afforded similar products and yields of 13-oxo-9(Z),11(E)-tridecadienoic acid compared to the enzymic reaction. The product 1-penten-3-ol may be the precursor of the "raw-bean" volatile ethylvinylketone.  相似文献   

15.
16.
The metabolism in vitro of [1-(14)C]linoleate, [1-(14)C]linolenate and their 9(S)-hydroperoxides in tulip (Tulipa gesneriana) was found to be under the control of 9-lipoxygenase and allene oxide synthase, and directed towards alpha-ketol, gamma-ketol and the novel compound (12Z)-10-oxo-11-hydroxy-12-octadecadienoic acid (10,11-ketol). Potent activity of allene oxide cyclase (in bulbs) and a new enzyme, gamma-ketol reductase (in bulbs and leaves), was detected. Metabolism in flowers is directed predominantly towards alpha-ketol hydroperoxide.  相似文献   

17.
Because jasmonic acid regulates a number of processes, including the expression of vegetative storage proteins in soybean (Glycine max L.) leaves, the relative activity of a specific portion of the jasmonic acid biosynthetic pathway in soybean tissues was examined. Allene oxide synthase and allene oxide cyclase were examined because they constitute a branch point leading specifically from 13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid to 12-oxo-phytodienoic acid, the precursor of jasmonic acid. From growing plants, seed coats (hila plus testae) of green fruits (38 d post-anthesis) were most active, eliciting about 1.5 times greater activity on a per milligram of protein basis than the next most active tissue, which was the pericarp. Leaves from fruiting plants were only one-seventh as active as seed coats, and activities in both immature cotyledons and embryonic axes were very low. No activity was detected in any part of stored, mature seeds. After 72 h of germination of stored seeds, a small amount of activity, about 4% of that in immature seed coats, was found in the plumule-hypocotyl-root, and no activity was detected in the cotyledons. The high levels of jasmonic acid biosynthetic enzymes in soybean pericarp and seed coat suggest a role for jasmonic acid in the transfer of assimilate to seeds.  相似文献   

18.
Incubations of allene oxide synthases of flax or maize with the E,E-isomers of the 13- and 9-hydroperoxides of linoleic acid (E,E-13- and E,E-9-HPOD, respectively) at pH 7.5 afforded substantial yields of trans-disubstituted cyclopentenones. Under the conditions used, (Z,E)-HPODs were converted mainly into -ketols and afforded only trace amount of cyclopentenones. These findings indicated that changing the double bond geometry from Z to E dramatically increased the rate of formation of the pericyclic pentadienyl cation intermediate necessary for electrocyclization of 18:2-allene oxides and thus the yield of cyclopentenones. The well-known cyclization of the homoallylic allene oxide (12,13-EOT) derived from -linolenic acid 13-hydroperoxide (E,Z-13-HPOT) into cis-12-oxo-10,15-phytodienoic acid was suppressed at pH below neutral and was not observable at pH 4.5. In contrast, cyclization of the allene oxide ((9E)-12,13-EOD) derived from (E,E)-13-HPOD was slightly favoured at low pH. The finding that the cyclizations of 12,13-EOT and (9E)-12,13-EOD were differently affected by changes in pH suggested that the mechanisms of cyclization of these allene oxides are distinct.  相似文献   

19.
A pathogen-inducible oxygenase in tobacco leaves and a homologous enzyme from Arabidopsis were recently characterized (Sanz, A., Moreno, J. I., and Castresana, C. (1998) Plant Cell 10, 1523-1537). Linolenic acid incubated at 23 degrees C with preparations containing the recombinant enzymes underwent alpha-oxidation with the formation of a chain-shortened aldehyde, i.e., 8(Z),11(Z), 14(Z)-heptadecatrienal (83%), an alpha-hydroxy acid, 2(R)-hydroxy-9(Z),12(Z),15(Z)-octadecatrienoic acid (15%), and a chain-shortened fatty acid, 8(Z),11(Z),14(Z)-heptadecatrienoic acid (2%). When incubations were performed at 0 degrees C, 2(R)-hydroperoxy-9(Z),12(Z),15(Z)-octadecatrienoic acid was obtained as the main product. An intermediary role of 2(R)-hydroperoxy-9(Z), 12(Z),15(Z)-octadecatrienoic acid in alpha-oxidation was demonstrated by re-incubation experiments, in which the hydroperoxide was converted into the same alpha-oxidation products as those formed from linolenic acid. 2(R)-Hydroperoxy-9(Z),12(Z), 15(Z)-octadecatrienoic acid was chemically unstable and had a half-life time in buffer of about 30 min at 23 degrees C. Extracts of cells expressing the recombinant oxygenases accelerated breakdown of the hydroperoxide (half-life time, about 3 min at 23 degrees C), however, this was not attributable to the recombinant enzymes since the same rate of hydroperoxide degradation was observed in the presence of control cells not expressing the enzymes. No significant discrimination between enantiomers was observed in the degradation of 2(R,S)-hydroperoxy-9(Z)-octadecenoic acid in the presence of recombinant oxygenases. A previously studied system for alpha-oxidation in cucumber was re-examined using the newly developed techniques and was found to catalyze the same conversions as those observed with the recombinant enzymes, i.e. enzymatic alpha-dioxygenation of fatty acids into 2(R)-hydroperoxides and a first order, non-stereoselective degradation of hydroperoxides into alpha-oxidation products. It was concluded that the recombinant enzymes from tobacco and Arabidopsis were both alpha-dioxygenases, and that members of this new class of enzymes catalyze the first step of alpha-oxidation in plant tissue.  相似文献   

20.
Blee E  Joyard J 《Plant physiology》1996,110(2):445-454
Enzymes in envelope membranes from spinach (Spinacia oleracea L.) chloroplasts were found to catalyze the rapid breakdown of fatty acid hydroperoxides. In contrast, no such activities were detected in the stroma or in thylakoids. In preparations of envelope membranes, 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, or 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid were transformed at almost the same rates (1-2 [mu]mol min-1 mg-1 protein). The products formed were separated by reversed-phase high-pressure liquid chromatography and further characterized by gas chromatography-mass spectrometry. Fatty acid hydroperoxides were cleaved (a) into aldehydes and oxoacid fragments, corresponding to the functioning of a hydroperoxide lyase, (b) into ketols that were spontaneously formed from allene oxide synthesized by a hydroperoxide dehydratase, (c) into hydroxy compounds synthesized enzymatically by a system that has not yet been characterized, and (d) into oxoenes resulting from the hydroperoxidase activity of a lipoxygenase. Chloroplast envelope membranes therefore contain a whole set of enzymes that catalyze the synthesis of a variety of fatty acid derivatives, some of which may act as regulatory molecules. The results presented demonstrate a new role for the plastid envelope within the plant cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号