首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The activity of succinate tetrazolium reductase was investigated in liver and kidney from the rat and mouse. The results obtained were related to the cellular level of succinate dehydrogenase (SDH) as well as to the level of CoQ.It was concluded that the low activity in centrolobular areas of the liver lobules compared with the perilobular areas, exclusively is due to a naturally deprivation of CoQ.The level of SDH as well as of CoQ was very high in renal cortical tubules rich in mitochondria (proximal and distal convoluted tubules, the ascending thick limb of Henle). This was indicated by the facts that the initial reaction rate was high and no enhancement was obtained by the addition of CoQ10.In all experiments the activity of fresh frozen sections were compared with the activity of sections from briefly prefixed tissue. The influence of different fixatives, variation in Nitro BT concentration, cryoprotection (dimethyl sulfoxide, DMSO) and osmolar protection (sucrose) was investigated and discussed. Further, the substrate-carrying effect of DMSO was investigated and discussed.Brief (5 min) fixation at 0–4° C—especially with 1% buffered (pH=7.2) methanol-free formaldehyde (from paraformaldehyde) gave excellent preservation of morphology and caused no inhibition of SDH activity. Furthermore, the fixation caused an enhancement of Nitro BT penetration into the tissue and an enhancement of formazan substantivity.The incubation time needed for the appearance of both the red and blue formazan was recorded in order to follow the initial reaction rate. This procedure proved to be a sensitive indicator, when the influence of components added (CoQ10, DMSO, sucrose etc.) was studied.  相似文献   

2.
Single motoneuron succinate dehydrogenase activity   总被引:1,自引:0,他引:1  
We have developed a quantitative histochemical assay for measurement of succinate dehydrogenase (SDH) activity in single motoneurons. A computer image processing system was used to quantify the histochemical enzyme reaction product and to follow the time course of the reaction. The optimal concentration for each of the ingredients of the incubation medium for the SDH reaction was determined and the importance of using histochemical "blanks" in the determination of enzymatic activity was demonstrated. The enzymatic activity was linear with respect to reaction time and tissue thickness. The procedure described meets the criteria generally considered essential for establishment of a quantitative histochemical assay. The assay was then used to examine the SDH activity of cat and rat motoneurons. It was found that motoneurons with a small soma size had a wide range of SDH activity, whereas those with a large soma size were restricted to low SDH activity.  相似文献   

3.
Reversible activation of succinate dehydrogenase   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Treatment of particulate respiratory chain preparations in ways expected to raise or lower the concentration of endogenous soluble low-molecular-weight compounds respectively increased and diminished the capacity of succinate dehydrogenase to become activated reversibly and ;spontaneously' when preparations were diluted in tris acetate buffer and incubated at 37 degrees . 2. Addition of critically low concentrations of recognized activators to preparations that failed to undergo reversible ;spontaneous' activation when incubated at 1mg. of protein/ml. conferred on them the capacity to do so. 3. Preparations with a diminished tendency to undergo reversible ;spontaneous' activation had an increased tendency to become irreversibly inactivated on prolonged incubation at 1mg. of protein/ml. in tris acetate. 4. Extraction procedures designed to demonstrate the presence of possible endogenous activators in enzyme preparations failed to reveal a single substance to which such a role could be conclusively attributed. A mixture of compounds was found, however, including certain amino acids that have been shown to act as activators. It is questionable whether these compounds would be present at sufficiently high concentrations to act as activators when enzyme preparations are diluted to 1mg. of protein/ml. 5. Despite the failure to demonstrate conclusively the presence of endogenous activators, the balance of evidence appears to favour the hypothesis that reversible ;spontaneous' activation of these preparations can best be explained by the presence of such substances, and a scheme describing the mechanism of activation and deactivation of succinate dehydrogenase is discussed in relation to these and other observations.  相似文献   

4.
5.
6.
Succinate dehydrogenase (SD) of mitochondria from rat liver or kidney is to a large extent in the active form as isolated, whereas SD activity of heart and skeletal muscle mitochondria can be activated as much as ten-fold over the basal activity when isolated. Incubation of the latter at 37° with bicarbonate resulted in more extensive activation of SD than when succinate was the activator. Activation by bicarbonate was not readily reversed by washing unless succinate was also present. The data indicate that bicarbonate and succinate share the same site for activation of SD. A physiological role for bicarbonate in regulation of SD activity in muscle is suggested.  相似文献   

7.
Role of phospholipids in succinate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

8.
Control of succinate dehydrogenase in mitochondria   总被引:6,自引:0,他引:6  
M Gutman  E B Kearney  T P Singer 《Biochemistry》1971,10(25):4763-4770
  相似文献   

9.
10.
The interaction of succinate dehydrogenase from the bovine adrenal cortex with succinate and oxaloacetate was studied in the process of its activation-deactivation. It is supposed that an intermediate unstable complex of succinate dehydrogenase with oxaloacetate plays an important role in the changed enzymic activity.  相似文献   

11.
Succinate dehydrogenase activities in homogenates of rat and ob/ob mouse pancreatic islets were only 13% of the activities in homogenates of liver and were also several times lower than in homogenates of pancreatic acinar tissue. This indicates that the content of mitochondria in pancreatic islet cells is very low. The very low activity of succinate dehydrogenase is in agreement with the low mitochondrial volume in the cytoplasmic ground substance of pancreatic islet cells as observed in morphometric studies. This may represent the poor equipment of pancreatic islet cells with electron transport chains and thus provide a regulatory role for the generation of reducing equivalents and chemical energy for the regulation of insulin secretion. The activities of succinate dehydrogenase in tissue homogenates of pancreatic islets, pancreatic acinar tissue, and liver were significantly inhibited by malonate and diazoxide but not by glucose, mannoheptulose, streptozotocin, or verapamil. Tolbutamide inhibited only pancreatic islet succinate dehydrogenase significantly, providing evidence for a different behavior of pancreatic islet cell mitochondria. Therefore diazoxide and tolbutamide may affect pancreatic islet function through their effects on succinate dehydrogenase activity. The activities of alpha-glycerophosphate dehydrogenase in homogenates of pancreatic islets and liver from rats and ob/ob mice were in the same range, while activities in homogenates of pancreatic acinar tissue were lower. None of the test agents affected alpha-glycerophosphate dehydrogenase activity. Thus the results provide no support for the recent contention that alpha-glycerophosphate dehydrogenase activity may be critical for the regulation of insulin secretion.  相似文献   

12.
The rates of the oxidized (Eox) and reduced (Ered) (by NAD . H through the ubiquinone pool) succinate dehydrogenase inhibition by N-ethyl-maleimide are equal and obey pseudo-first order kinetics. The protection of the enzyme against irreversible alkylation was used to quantitate the dissociation constants for Eox and Ered complexes with fumarate, succinate and malonate under conditions when no intramolecular redox reactions might occur. the membrane-bound succinate dehydrogenase catalyzes the succinate : phenazine-methosulphate reductase reaction in the presence of thenoyltrifluoroacetone by a Slater-Bonner mechanism. A comparison of the constants measured by the protection with those derived from the steady-state kinetics shows that succinate affinity for Eox is about 10 times higher than that for Ered; the reverse relations were found for fumarate, whereas the affinity for malonate only slightly depends on the redox state of the enzyme. The data obtained suggest that the dicarboxylate binding at the active site induces changes in the enzyme redox potential. The surface charge does not contribute significantly to the energy of the dicarboxylate binding to the active site of the membrane-bound enzyme.  相似文献   

13.
14.
15.
Fluorescamine rapidly inactivated membrane-bound succinate dehydrogenase. The inhibition of the enzyme by this reagent was prevented by succinate and malonate, suggesting that the group modified by fluorescamine was located at the active site. The modification of the active site sulfhydryl group by 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) did not alter the inhibitory action of fluorescamine. However, the protective effect of malonate against fluorescamine inhibition was abolished in the enzyme modified at the thiol.  相似文献   

16.
龚玉莲 《生物学杂志》2012,29(1):106-107
琥珀酸脱氢酶作用的实验是《生物化学》课程的重要实验之一。由于材料来源、成本、操作、结果等在实验教学中存在的问题,影响了该实验的效果和开出率。采用普通鸽子胸脯处肌肉作为实验材料,并对实验条件和程序进行优化,从而使教学取得了较好的效果,实验开出率也得以提高。  相似文献   

17.
The effect of disulfiram on succinate oxidase and succinate dehydrogenase activities of beef heart submitochondrial particles was studied. Results show that disulfiram inhibits both functions. Succinate and malonate suppress the inhibitory action of disulfiram when succinate dehydrogenase is stabilized in an active conformation. Disulfiram is not able to inhibit the enzyme when succinate dehydrogenase is inactivated by oxaloacetate. The inhibitory effect of disulfiram is reverted by the addition of dithiothreitol. From these results, it is proposed that disulfiram inhibits the utilization of succinate by a direct modification of an -SH group located in the catalytically active site of succinate dehydrogenase.  相似文献   

18.
19.
20.
The interaction of the sulfurtransferase rhodanese (EC 2.8.1.1) with succinate dehydrogenase (EC 1.3.99.1), yeast alcohol dehydrogenase (EC 1.1.1.1) and bovine serum albumin was studied. Succinate dehydrogenase incorporates the sulfane sulfur of [35S]rhodanese and, in the presence of unlabelled rhodanese, also incorporates that of [35S]thiosulfate. Rhodanese releases most of its transferable sulfur and is re-loaded in the presence of thiosulfate. Rhodanese undergoes similar modifications with yeast alcohol dehydrogenase but this latter does not bind 35S in amounts comparable to those incorporated in succinate dehydrogenase: nearly all the 35S released by [35S]rhodanese is with low-molecular-weight compounds. Bovine serum albumin also binds very little sulfur and [35S]rhodanese present in the reaction mixture does not discharge its radioactive sulfur nor does it take up sulfur from thiosulfate. Sulfur release from rhodanese appears to depend on the presence of - SH groups in the acceptor protein. Sulfur incorporated into succinate dehydrogenase was analytically determined as sulfide. A comparison of the optical spectra of succinate dehydrogenase preparations incubated with or without rhodanese indicates that there is an effect of the sulfurtransferase on the iron-sulfur absorption of the flavorprotein. The interaction of rhodanese with succinate dehydrogenase greatly decreases the catalytic activity of rhodanese with respect to thiocyanate formation. This is attributed to modifications in rhodanese associated with the reduction of sulfane sulfur to sulfide. Thiosulfate in part protects from this deactivation. The reconstitutive capacity of succinate dehydrogenase increased in parallel with sulfur incorporated in that enzyme following its interaction with rhodanese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号