首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly stable lipase from Geobacillus thermocatenolatus (BTL2) and the enhanced green fluorescent protein from Aquorea victoria (EGFP) were recombinantly produced N-terminally tagged to the lectin domain of the hemolytic pore-forming toxin LSLa from the mushroom Laetiporus sulphureus . Such a domain (LSL(150)), recently described as a novel fusion tag, is based on a β-trefoil scaffold with two operative binding sites for galactose or galactose-containing derivatives. The fusion proteins herein analyzed have enabled us to characterize the binding mode of LSL(150) to polymeric and solid substrates such as agarose beads. The lectin-fusion proteins are able to be quantitatively bound to both cross-linked and non-cross-linked agarose matrixes in a very rapid manner, resulting in a surprisingly dynamic protein distribution inside the porous beads that evolves from heterogeneous to homogeneous along the postimmobilization time. Such dynamic distribution can be related to the reversible nature of the LSL(150)-agarose interaction. Furthermore, this latter interaction is temperature dependent since it is 4-fold stronger when the immobilization takes place at 25 °C than when it does at 4 °C. The strongest lectin-agarose interaction is also quite stable under a survey of different conditions such as high temperatures (up to 60 °C) or high organic solvent concentrations (up to 60% of acetonitrile). Notably, the use of cross-linked agarose would endow the system with more robustness due to its better mechanical properties compared to the noncross-linked one. The stability of the LSL(150)-agarose interaction would prevent protein leaching during the operation process unless high pH media are used. In summary, we believe that the LSL(150) lectin domain exhibits interesting structural features as an immobilization domain that makes it suitable to reversibly immobilize industrially relevant enzymes in very simple carriers as agarose.  相似文献   

2.
LSL is a lectin produced by the parasitic mushroom Laetiporus sulphureus, which exhibits hemolytic and hemagglutinating activities. Here, we report the crystal structure of LSL refined to 2.6-A resolution determined by the single isomorphous replacement method with the anomalous scatter (SIRAS) signal of a platinum derivative. The structure reveals that LSL is hexameric, which was also shown by analytical ultracentrifugation. The monomeric protein (35 kDa) consists of two distinct modules: an N-terminal lectin module and a pore-forming module. The lectin module has a beta-trefoil scaffold that bears structural similarities to those present in toxins known to interact with galactose-related carbohydrates such as the hemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum, abrin, and ricin. On the other hand, the C-terminal pore-forming module (composed of domains 2 and 3) exhibits three-dimensional structural resemblances with domains 3 and 4 of the beta-pore-forming toxin aerolysin from the Gram-negative bacterium Aeromonas hydrophila, and domains 2 and 3 from the epsilon-toxin from Clostridium perfringens. This finding reveals the existence of common structural elements within the aerolysin-like family of toxins that could be directly involved in membrane-pore formation. The crystal structures of the complexes of LSL with lactose and N-acetyllactosamine reveal two dissacharide-binding sites per subunit and permits the identification of critical residues involved in sugar binding.  相似文献   

3.
In this work, we analyzed at high resolution the sugar-binding mode of the recombinant N-terminal ricin-B domain of the hemolytic protein LSLa (LSL(150)) from the mushroom Laetiporus sulphureus and also provide functional in vitro evidence suggesting that, together with its putative receptor-binding role, this module may also increase the solubility of its membrane pore-forming partner. We first demonstrate that recombinant LSL(150) behaves as an autonomous folding unit and an active lectin. We have determined its crystal structure at 1.47?? resolution and also that of the [LSL(150):(lactose)β, γ)] binary complex at 1.67?? resolution. This complex reveals two lactose molecules bound to the β and γ sites of LSL(150), respectively. Isothermal titration calorimetry indicates that LSL(150) binds two lactoses in solution with highly different affinities. Also, we test the working hypothesis that LSL(150) exhibits in vivo properties typical of solubility tags. With this aim, we have fused an engineered version of LSL(150) (LSL(t)) to the N-terminal end of various recombinant proteins. All the designed LSL(150)-tagged fusion proteins were successfully produced at high yield, and furthermore, the target proteins were purified by a straightforward affinity procedure on agarose-based matrices due to the excellent properties of LSL(150) as an affinity tag. An optimized protocol for target protein purification was devised, which involved removal of the LSL(150) tag through in-column cleavage of the fusion proteins with His(6)-tagged TEV endoprotease. These results permitted to set up a novel, lectin-based system for production and purification of recombinant proteins in E. coli cells with attractive biotechnological applications.  相似文献   

4.
We report here the purification, characterization, and cDNA cloning of a novel N-acetylgalactosamine-specific lectin from starfish, Asterina pectinifera. The purified lectin showed 19-kDa, 41-kDa, and 60-kDa protein bands on SDS-PAGE, possibly corresponding to a monomer, homodimer, and homotrimer. Interestingly, on 4-20% native PAGE the lectin showed at least nine protein bands, among which oligomers containing six to nine subunits had potent hemagglutination activity for sheep erythrocytes. The hemagglutination activity of the lectin was specifically inhibited by N-acetylgalactosamine, Tn antigen, and blood group A trisaccharide, but not by N-acetylglucosamine, galactose, galactosamine, or blood group B trisaccharide. The specificity of the lectin was further examined using various glycosphingolipids and biotin-labeled lectin. The lectin was found to bind to Gb5Cer, but not Gb4Cer, Gb3Cer, GM1a, GM2, or asialo-GM2, indicating that the lectin specifically binds to the terminal alpha-GalNAc at the nonreducing end. The hemagglutination activity of the lectin was completely abolished by chelation with EDTA or EGTA and completely restored by the addition of CaCl(2). cDNA cloning of the lectin showed that the protein is composed of 168 amino acids, including a signal sequence of 18 residues, and possesses the typical C-type lectin motif. These findings indicate that the protein is a C-type lectin. The recombinant lectin, produced in a soluble form by Escherichia coli, showed binding activity for asialomucin in the presence of Ca(2+) but no hemagglutination.  相似文献   

5.
Bordetella pertussis adenylate cyclase (AC) toxin belongs to the RTX family of toxins but is the only member with a known catalytic domain. The principal pathophysiologic function of AC toxin appears to be rapid production of intracellular cyclic AMP (cAMP) by insertion of its catalytic domain into target cells (referred to as intoxication). Relative to other RTX toxins, AC toxin is weakly hemolytic via a process thought to involve oligomerization of toxin molecules. Monoclonal antibody (MAb) 3D1, which binds to an epitope (amino acids 373 to 399) at the distal end of the catalytic domain of AC toxin, does not affect the enzymatic activity of the toxin (conversion of ATP into cAMP in a cell-free system) but does prevent delivery of the catalytic domain to the cytosol of target erythrocytes. Under these conditions, however, the ability of AC toxin to cause hemolysis is increased three- to fourfold. To determine the mechanism by which the hemolytic potency of AC toxin is altered, we used a series of deletion mutants. A mutant toxin, DeltaAC, missing amino acids 1 to 373 of the catalytic domain, has hemolytic activity comparable to that of wild-type toxin. However, binding of MAb 3D1 to DeltaAC enhances its hemolytic activity three- to fourfold similar to the enhancement of hemolysis observed with 3D1 addition to wild-type toxin. Two additional mutants, DeltaN489 (missing amino acids 6 to 489) and DeltaN518 (missing amino acids 6 to 518), exhibit more rapid hemolysis with quicker onset than wild-type toxin does, while DeltaN549 (missing amino acids 6 to 549) has reduced hemolytic activity compared to wild-type AC toxin. These data suggest that prevention of delivery of the catalytic domain or deletion of the catalytic domain, along with additional amino acids distal to it, elicits a conformation of the toxin molecule that is more favorable for hemolysis.  相似文献   

6.
Many bacterial toxins utilize cell surface glycoconjugate receptors for attachment to target cells. In the present study the potential carbohydrate binding of Helicobacter pylori vacuolating cytotoxin VacA was investigated by binding to human gastric glycosphingolipids on thin-layer chromatograms. Thereby a distinct binding of the toxin to two compounds in the non-acid glycosphingolipid fraction was detected. The VacA-binding glycosphingolipids were isolated and characterized by mass spectrometry and proton NMR as galactosylceramide (Galbeta1Cer) and galabiosylceramide (Galalpha4Galbeta1Cer). Comparison of the binding preferences of the protein to reference glycosphingolipids from other sources showed an additional recognition of glucosylceramide (Glcbeta1Cer), lactosylceramide (Galbeta4Glcbeta1Cer) and globotriaosylceramide (Galalpha4Galbeta4Glcbeta1Cer). No binding to the glycosphingolipids recognized by the VacA holotoxin was obtained with a mutant toxin with deletion of the 37 kDa fragment of VacA (P58 molecule). Collectively our data show that the VacA cytotoxin is a glycosphingolipid binding protein, where the 37 kDa moiety is required for carbohydrate recognition. The ability to bind to short chain glycosphingolipids will position the toxin close to the cell membrane, which may facilitate toxin internalization.  相似文献   

7.
Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.  相似文献   

8.
Based on sequence homology with the previously cloned human cerebroside sulfotransferase (CST) cDNA, a novel sulfotransferase was cloned by screening a human fetal brain cDNA library. The novel sulfotransferase gene was present on human chromosome 11q13; the location was different from human CST and from that of the recently cloned human beta-Gal 3'-sulfotransferase (GP3ST). The isolated cDNA contained an open reading frame that encoded a predicted protein of 431 amino acid residues with type II transmembrane topology. The amino acid sequence showed 33% identity with that of human CST and 38% with that of human GP3ST. The recombinant enzyme expressed in Chinese hamster ovary cells catalyzed transfer of sulfate to position 3 of non-reducing beta-galactosyl residues in Galbeta1-4GlcNAc. Type 2 chains served as good acceptors, whereas type 1 chains served as poor acceptors, and intermediate activity was found toward Galbeta1-3GalNAc. Therefore, the substrate specificity was different from that of GP3ST. CST activity was not detected in the newly cloned enzyme. Northern blotting analysis showed that the sulfotransferase mRNA was strongly expressed in the thyroid and moderately expressed in the brain, heart, kidney, and spinal cord. Co-transfection of the enzyme cDNA and fucosyltransferase III into COS-7 cells resulted in expression of (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc and a small amount of (SO(4)-3)Galbeta1-3(Fucalpha1-4)GlcNAc. These results indicated that the newly cloned enzyme is a novel Gal-3-O-sulfotransferase and is involved in biosynthesis of the (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc structure.  相似文献   

9.
A lectin recognizing both Galbeta1-3GlcNAc and Galbeta1-4GlcNAc was purified from the demosponge Halichondria okadai by lactosyl-agarose affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa by SDS-PAGE under reducing and non-reducing conditions and 60 kDa by gel permeation chromatography. The pI value of the lectin was 6.7. It was found to agglutinate trypsinized and glutaraldehyde-fixed rabbit and human erythrocytes in the presence and absence of divalent cations. The hemagglutinating activity by the lectin was inhibited by d-galactose, methyl-d-galactopyranoside, N-acetyl-d-galactosamine, methyl-N-acetyl-d-galactosaminide, lactose, melibiose, and asialofetuin. The K(d) of the lectin against p-nitrophenyl-beta-lactoside was determined to be 2.76x10(-5) M and its glycan-binding profile given by frontal affinity chromatography was shown to be similar to many other known galectins. Partial primary structure analysis of 7 peptides by cleavage with lysyl endopeptidase indicated that one of the peptides showed significant similarity with galectin purified from the sponge Geodia cydonium.  相似文献   

10.
Abstract The hemagglutinating activity and carbohydrate specificity of cholera toxin (cholera enterotoxin) was studied using hemagglutination and hemagglutination inhibition. Hemagglutination was obtained with cholera toxin at >108 μg/ml for human types A, B, and O erythrocytes, >216 μg/ml for chicken erythrocytes, and >865 μg/ml for sheep erythrocytes. When the erythrocytes were treated with either neuraminidase or pronase, the hemagglutinating activity of cholera toxin was enhanced about 8- to 32-fold. Hemagglutination of pronase-treated human type B erythrocytes induced by cholera toxin was inhibited by lactose, galactose, melibiose and l -arabinose. Lactose was the most effective of the mono-, di-, and polysaccharides used as inhibitors, being a slightly better inhibitor than galactose, and much more potent than melibiose. These results suggest that cholera toxin is a bacterial lectin specific for galactose and/or lactose.  相似文献   

11.

Background

CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata that shows Ca2 +-dependent Gal/GalNAc-binding specificity. This lectin is composed of two carbohydrate-recognition domains (domains 1 and 2) and an oligomerization domain (domain 3) that facilitates CEL-III assembly in the target cell membrane to form ion-permeable pores.

Methods

Several amino acid residues in domain 3 were replaced by alanine, and hemolytic activity of the mutants was examined.

Results

K344A, K351A, K405A, K420A and K425A showed marked increases in activity. In particular, K405A had activity that was 360-fold higher than the wild-type recombinant CEL-III and 3.6-fold higher than the native protein purified from sea cucumber. Since these residues appear to play roles in the stabilization of domain 3 through ionic and hydrogen bonding interactions with other residues, the mutations of these residues presumably lead to destabilization of domain 3, which consequently induces the oligomerization of the protein through association of domain 3 in the membrane. In contrast, K338A, R378A and R408A mutants exhibited a marked decrease in hemolytic activity. Since these residues are located on the surface of domain 3 without significant interactions with other residue, they may be involved in the interaction with components of the target cell membrane.

Conclusions

Several amino acid residues, especially basic residues, are found to be involved in the hemolytic activity as well as the oligomerization ability of CEL-III.

General significance

The results provide important clues to the membrane pore-forming mechanism of CEL-III, which is also related to that of bacterial pore-forming toxins.  相似文献   

12.
A novel lectin was purified from the coelomic fluid of the sea cucumber Holothuria scabra (HSL), subjected to bacterial challenge. HSL is a monomeric glycoprotein of molecular mass 182 kDa. The lectin is highly thermostable as it retains full activity for 1 h at 80 degrees C. Further, the hemagglutination activity of HSL is unaffected by pH in the range 2-11. Unlike other lectins purified from marine invertebrates, the hemagglutination activity of HSL does not require any divalent metal ions. The affinity profile of HSL was studied by a combination of hemagglutination inhibition and fluorescence spectroscopy. HSL binds to desialylated glycoproteins, MealphaGal, T-antigen and T (alpha-ser)-antigen with a distinction between beta1-4 and beta1-3 linkages. Mealpha-T-antigen was a potent ligand having highest affinity (Ka 8.32 x 10(7)M(-1)). Monosaccharide binding is enthalphically driven while disaccharide binding involves both entropic and enthalpic contributions.  相似文献   

13.
A galactose specific lectin was isolated from the seeds of Ficus bengalensis (Moraceae) fruits and designated as F. bengalensis agglutinin (FBA). The lectin was purified by affinity repulsion chromatography on fetuin-agarose and was a monomer of molecular mass 33kDa. Like other Moraceae family lectins, carbohydrate-binding activity of FBA was independent of any divalent cation. FBA did not bind with simple saccharides, however sugar ligands with aromatic aglycons showed pronounced binding. The combining site of FBA recognized preferably Galbeta1,4GlcNAcbeta1-(II) followed by Galbeta1,3GalNAcalpha1-(Talpha) containing glycotopes. Interaction with saccharides revealed that the combining site of FBA could well accommodate a tetrasaccharide, asialo GM1 glycan (Galbeta1,3GalNAcbeta1,4Galbeta1,4Glcbeta1-), whereas polyvalent Tn (GalNAcalpha1-Ser/Thr), one of the well-recognized ligands of Moraceae family lectin, did not interact well with FBA.  相似文献   

14.
CEL-III is a hemolytic lectin purified from the marine invertebrate Cucumaria echinata. Previous research has indictated that CEL-III is composed of several isoforms. Here we identified five CEL-III isolectin genes, designated CEL-III-L1, CEL-III-L2, CEL-III-S1, CEL-III-S2, and CEL-III-LS1, by cDNA cloning. The deduced amino acid sequences suggested they shared 94.0-99.8% identical residues. Among the amino acid residues involved in carbohydrate binding, the His residue, which contributes to stacking with sugar, in subdomain 1α was replaced by Tyr in CEL-III-L2. The recombinant proteins were expressed in Escherichia coli or insect cells. rCEL-III-L2 showed higher hemolytic activity than those of the other isolectins. Furthermore, an apparent oligomer band of rCEL-III-L2 was detected on erythrocyte membranes, although the other isolectins showed smear bands. These results suggest that Tyr36 of CEL-III-L2 is important for the expression of hemolytic activity and oligomerization.  相似文献   

15.
Replacement of the Trp-1 in Clostridium perfringens alpha-toxin with tyrosine caused no effect on hemolytic and phospholipase C (PLC) activities or on binding to the zinc ion, but that of the residue with alanine, glycine and histidine led to drastic decreases in these activities and a significant reduction in binding to the zinc ion. The hemolytic and PLC activities of W1H and W1A were significantly increased by the preincubation of these variant toxins with zinc ions, but the preincubation of W1G with the metal ion caused little effect on these activities. Gly-Ile-alpha-toxin, which contained an additional Gly-Ile linked to the N-terminal amino acid of alpha-toxin, did not show hemolytic activity, but showed about 6% PLC activity of the wild-type toxin. A mutant toxin, which contained an additional Gly-Ile linked to the N-terminus of a protein lacking 4 N-terminal residues of alpha-toxin, showed about 1 and 6% hemolytic and PLC activities of the wild-type toxin, respectively. Incubation of the mutant toxin with zinc ions caused a significant increase in PLC activity. These observations suggested that Trp-1 is not essential for toxin activity, but plays a role in binding to zinc ions.  相似文献   

16.
The box jellyfish Chironex fleckeri produces extremely potent and rapid-acting venom that is harmful to humans and lethal to prey. Here, we describe the characterization of two C. fleckeri venom proteins, CfTX-A (∼40 kDa) and CfTX-B (∼42 kDa), which were isolated from C. fleckeri venom using size exclusion chromatography and cation exchange chromatography. Full-length cDNA sequences encoding CfTX-A and -B and a third putative toxin, CfTX-Bt, were subsequently retrieved from a C. fleckeri tentacle cDNA library. Bioinformatic analyses revealed that the new toxins belong to a small family of potent cnidarian pore-forming toxins that includes two other C. fleckeri toxins, CfTX-1 and CfTX-2. Phylogenetic inferences from amino acid sequences of the toxin family grouped CfTX-A, -B, and -Bt in a separate clade from CfTX-1 and -2, suggesting that the C. fleckeri toxins have diversified structurally and functionally during evolution. Comparative bioactivity assays revealed that CfTX-1/2 (25 μg kg−1) caused profound effects on the cardiovascular system of anesthetized rats, whereas CfTX-A/B elicited only minor effects at the same dose. Conversely, the hemolytic activity of CfTX-A/B (HU50 = 5 ng ml−1) was at least 30 times greater than that of CfTX-1/2. Structural homology between the cubozoan toxins and insecticidal three-domain Cry toxins (δ-endotoxins) suggests that the toxins have a similar pore-forming mechanism of action involving α-helices of the N-terminal domain, whereas structural diversification among toxin members may modulate target specificity. Expansion of the cnidarian toxin family therefore provides new insights into the evolutionary diversification of box jellyfish toxins from a structural and functional perspective.  相似文献   

17.
Some properties of the bacterial cardiotoxins, thermostable direct hemolysin from Vibrio parahaemolyticus (vibriolysin), and streptolysin O and hemolysin from Listeria monocytogenes (listeriolysin), were compared. These toxins had rapid lethal effects on mice when injected intravenously. The electrocardiographic changes of rats after intravenous injections of these toxins were very similar, showing bradycardia and inhibition of atrio-ventricular conduction. These toxins also caused cessation of the spontaneous beating and degeneration of cultured foetal mouse heart cells. When equal hemolytic units of these three toxins were administered, vibriolysin had the most potent effects on mice and cultured mouse heart cells. Differences in the kinetics of the hemolysis by each toxin and in the effects of cholesterol of their hemolytic actions suggest that the mode of action of vibriolysin is different from those of streptolysin O and listeriolysin.  相似文献   

18.
The cytolytic mechanism of cholesterol-dependent cytolysins (CDCs) requires the presence of cholesterol in the target cell membrane. Membrane cholesterol was thought to serve as the common receptor for these toxins, but not all CDCs require cholesterol for binding. One member of this toxin family, pneumolysin (PLY) is a major virulence factor of Streptococcus pneumoniae, and the mechanism via which PLY binds to its putative receptor or cholesterol on the cell membrane is still poorly understood. Here, we demonstrated that PLY interacted with carbohydrate moiety and cholesterol as a component of the cell membrane, using the inhibitory effect of hemolytic activity. The hemolytic activity of PLY was inhibited by cholesterol-MβCD, which is in a 3β configuration at the C3-hydroxy group, but is not in a 3α-configuration. In the interaction between PLY and carbohydrate moiety, the mannose showed a dose-dependent increase in the inhibition of PLY hemolytic activity. The binding ability of mannose with truncated PLYs, as determined by the pull-down assay, showed that mannose might favor binding to domain 4 rather than domains 1–3. These studies provide a new model for the mechanism of cellular recognition by PLY, as well as a foundation for future investigations into whether non-sterol molecules can serve as receptors for other members of the CDC family of toxins.  相似文献   

19.
The Cyt toxins produced by the bacteria Bacillus thuringiensis show insecticidal activity against some insects, mainly dipteran larvae, being able to kill mosquitoes and black flies. However, they also possess a general cytolytic activity in vitro, showing hemolytic activity in red blood cells. These proteins are composed of two outer layers of α-helix hairpins wrapped around a β-sheet. With regard to their mode of action, one model proposed that the two outer layers of α-helix hairpins swing away from the β-sheet, allowing insertion of β-strands into the membrane forming a pore after toxin oligomerization. The other model suggested a detergent-like mechanism of action of the toxin on the surface of the lipid bilayer. In this work, we cloned the N- and C-terminal domains form Cyt1Aa and analyzed their effects on Cyt1Aa toxin action. The N-terminal domain shows a dominant negative phenotype inhibiting the in vitro hemolytic activity of Cyt1Aa in red blood cells and the in vivo insecticidal activity of Cyt1Aa against Aedes aegypti larvae. In addition, the N-terminal region is able to induce aggregation of the Cyt1Aa toxin in solution. Finally, the C-terminal domain composed mainly of β-strands is able to bind to the SUV liposomes, suggesting that this region of the toxin is involved in membrane interaction. Overall, our data indicate that the two isolated domains of Cyt1Aa have different roles in toxin action. The N-terminal region is involved in toxin aggregation, while the C-terminal domain is involved in the interaction of the toxin with the lipid membrane.  相似文献   

20.
Abstract The hemagglutinating activity of the B subunit(s) of the heat-labile toxin (LTh - B) produced by human enterotoxigenic Escherichia coli was studied by hemagglutination and hemagglutination inhibition. Very strong hemagglutination of both neuraminidase- and pronase-treated human erythrocytes was induced by the LTh - B whereas that of intact ones was induced weakly or not at all by the LTh - B at the highest concentration used. Enhancement in hemagglitination of these human erythrocytes by the LTh - B was about 8- to 512-fold for type A and B erythrocytes and 16-fold for type O erthrocytes, respectively. On the other hand, no hemagglutination of intact and treated sheep erythrocytes was found by the LTh - B at the highest concentration used. Hemagglutination of pronase-treated human type B erythrocytes by the LTh - B was inhibited by galactose and melibiose among mono-, di- and polysaccharides used as inhibitors. These findings suggest that the LTh - B is a bacterial lectin specific for galactose-linked residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号