首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective was to compare pregnancy rates to resynchronization and timed AI (TAI) protocols in lactating dairy cows that received GnRH at 23 d and were diagnosed not pregnant at 30 d after the pre-enrollment AI. Nonpregnant cows (624) at ultrasonography on day 30 (study day 0) were classified as diestrus (74.8%), metestrus (5.6%) and without a CL (19.5%). Cows in diestrus were assigned either to the GnRH group (PGF2alpha on day 0, GnRH on day 2 and TAI 16 h later, n = 238) or the estradiol cypionate (ECP) group (PGF2alpha on day 0, ECP on day 1, and TAI 36 h later, n = 229). Cows in metestrus were assigned to the Modified Heatsynch Group (GnRH on day 0, PGF(2alpha) on day 7, ECP on day 8 and TAI on day 9, n = 35). Cows without a CL (n = 122) were classified either as proestrus (10.6%), ovarian cysts (7.5%) or anestrus (1.4%), and assigned to factorial treatments (i.e., use of GnRH versus CIDR) to either the GnRH group (GnRH on day 0, PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 28), the CIDR group (CIDR insert from days 0 to 7, PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 34), the GnRH + CIDR group (GnRH on day 0, CIDR insert from days 0 to 7, PGF2alpha on day 7, GnRH on day 9 and TAI 16h later, n = 32), and the control group (PGF2alpha on day 7, GnRH on day 9 and TAI 16 h later, n = 28). For cows without a CL, plasma P4 concentrations were determined on days 0, 7, 10 and 17 and ovarian structures determined on days 0, 7 and 17. Pregnancy rates were evaluated at 30, 55 and 90 d after the resynchronized AI. For cows in diestrus, there were no differences in pregnancy rates on days 30, 55 and 90 for cows in the GnRH (27.5, 26.5 and 24.2%) or ECP (29.1, 25.5 and 24.1%) groups. In addition, there were no differences in pregnancy losses between days 30 and 55 and 55 and 90 between the GnRH (7.0 and 8.6%) and ECP (9.8 and 5.4%) groups. For cows without a CL, GnRH on day 0 increased the proportion of cows with a CL on days 7 and 17 and plasma P4 concentration on day 17 in cows with ovarian cysts but not for cows in proestrus. The CIDR insert increased pregnancy rate in cows with ovarian cysts but reduced pregnancy rate for cows in proestrus.  相似文献   

2.
The objective of this study was to compare the conception rate for fixed-timed artificial insemination (FTAI) and observed heat artificial insemination (HAI) prior to the scheduled FTAI in Ovsynch and Heatsynch synchronization protocols. In Experiment 1, lactating dairy cows (n=535) received two set-up injections of 25mg prostaglandin F(2alpha) (PGF(2alpha)) i.m., 14 days apart starting at 36+/-3 days in milk (DIM). Cows were blocked by parity and were randomly allocated to either Ovsynch or Heatsynch groups. All cows received 100 microg of GnRH i.m. 14 days after the second set-up injection of PGF(2alpha), followed by a third injection of 25mg PGF(2alpha) i.m., 7 days later. In the Ovsynch group, HAI cows (n=29) were bred on standing estrus after the third PGF(2alpha) before the scheduled second GnRH, whereas FTAI cows (n=218) that were not observed in estrus, received a second injection of 100 microg of GnRH i.m., 48 h after the third PGF(2alpha) and received TAI 8 h after the second GnRH. In the Heatsynch group, all cows (n=288) received 0.5 mg of estradiol cypionate (ECP) 24 h after third PGF(2alpha) and HAI cows (n=172) were bred on standing estrus and FTAI cows (n=116) that were not observed in estrus, received TAI 72 h after the third PGF(2alpha). In Experiment 2, repeat breeder cows (n=186) were randomly assigned to either Ovsynch or Heatsynch groups. The FTAI and HAI cows were inseminated similar to Experiment 1. All cows were observed for estrus three times daily. The associations with the conception rate were modeled with logistic regression separately for Experiments 1 and 2. Of all the variables included in the model in Experiment 1, type of AI (HAI versus FTAI, P=0.0003) and parity (primiparous versus multiparous, P=0.05) influenced the first service conception rate. Over-all conception rate and first service conception rate for HAI cows were higher compared to FTAI cows (33.8% versus 21.3%, and 35.3% versus 21.0%; P=0.001). In the Heatsynch group, cows that received HAI had significantly higher over-all conception rate and first service conception rate compared to FTAI (35.2% versus 17.3% and 36.0% versus 15.5%; P=0.0001). The conception rates in repeat breeder cows for HAI and FTAI (30.1% versus 22.3%) were not different (P>0.1). In conclusion, it was recommended to include AI at observed estrus and fixed-time AI for cows not observed in estrus in order to improve the conception rate in synchronization protocols.  相似文献   

3.
Pregnancy rates were compared in lactating dairy cows (n = 1083) assigned to protocols for resynchronization of ovulation based on stages of the estrous cycle, or presence of ovarian cysts or anestrus. Cows were detected not pregnant by ultrasonography 30 d after a previous AI (study day 0) and classified as diestrus, metestrus, proestrus, with ovarian cysts or anestrus. Cows in diestrus (January-May) were assigned to either Ovsynch (GnRH day 0, PGF2alpha day 7, GnRH day 9, and timed-AI [TAI] 16 h later; n = 96), or Quicksynch (PGF2alpha day 0, estradiol cypionate [ECP] day 1, AI at detected estrus [AIDE] on day 2, or TAI on day 3; n = 96). Cows in diestrus (June-December) were assigned to either Ovsynch (n = 156) or Modified Quicksynch (PGF2alpha day 0, ECP day 1, AIDE days 2 and 3, and to Ovsynch on day 4 if not detected in estrus; n = 142). Cows in metestrus were assigned either to Ovsynch (n = 68), Heatsynch (GnRH day 0, PGF2alpha day 7, ECP day 8, AIDE day 9, or TAI day 10; n = 62), or GnRH + Ovsynch (GnRH on day 0, followed by Ovsynch on day 8; n = 64). Cows in proestrus, with ovarian cysts, or anestrus were assigned to either Ovsynch (proestrus n = 89, ovarian cysts n = 97, anestrus n = 8) or GnRH + Ovsynch (proestrus n = 87, ovarian cysts n = 109, anestrus n = 9). Pregnancy rate was evaluated 30, 55 and 90 d after resynchronized AI. For cows in diestrus (January-May), pregnancy rates were higher for Ovsynch (35.9, 29.2 and 26.0%) than for Quicksynch (21.7, 16.7 and 15.6%). For cows in diestrus (June-December), pregnancy rates were similar for Ovsynch (34.4, 24.0 and 23.6%) and Modified Quicksynch (27.1, 26.2 and 21.6%). For cows in metestrus, pregnancy rates were higher for GnRH + Ovsynch (33.3, 24.5 and 20.3%) than for Heatsynch (20.3, 12.9 and 9.8%). For cows with ovarian cysts, pregnancy rates were higher for GnRH + Ovsynch (30.3, 26.6 and 22.9%) than for Ovsynch (20.2, 18.5 and 14.7%). Assignment to resynchronization protocols based on the stages of the estrous cycle, or presence of ovarian cysts improved pregnancy rates.  相似文献   

4.
The objective of this study was to compare the effectiveness of the Ovsynch and controlled internal drug releasing (CIDR) protocols under commercial conditions for the treatment of cystic ovarian disease in dairy cattle. A total of 401 lactating dairy cows with ovarian cysts were alternatively allocated to two treatment groups on the day of diagnosis. Cows in the Ovsynch group were treated with GnRH on Day 0, PGF2alpha on Day 7, GnRH on Day 9, with timed insemination 16-20 h later. Cows in the CIDR group were treated with a CIDR insert on Day 0 for 7 days; on Day 7, the CIDR was removed, and cows were treated with PGF2alpha. All cows in the CIDR group were observed for estrus and cows exhibiting estrus within 7 days following removal of the CIDR and PGF2alpha administration were inseminated. The outcomes of interest for this experiment were the likelihood to be inseminated, return to cyclicity (determined by a CL on Day 21), conception and pregnancy rates. Data for these variables were analyzed using logistic regression. The percentage of cows inseminated in the Ovsynch and CIDR groups were 82 and 44%, respectively. Cows in the Ovsynch group were 5.8 times more likely to be inseminated than cows in the CIDR group. Cows with a low BCS were 0.48 times less likely to be inseminated than cows with a high BCS. The percentage of cows with a CL on Day 21 for the Ovsynch and CIDR groups was 83 and 79%, respectively (P > 0.05). Cows with a low BCS were 0.49 times less likely to have CL on Day 21 than cows with a high BCS. Conception and pregnancy rates for cows in the Ovsynch group were 18.3 and 14.4%, respectively. Conception and pregnancy rates for cows in the CIDR group were 23.1 and 9.5%, respectively. There was no significant differences between conception or pregnancy rates in cows in both groups. Primiparous cows were 2.6 times more likely to conceive than multiparous cows. In conclusion, the results of this study suggested that fertility was not different between cows with ovarian cysts treated with either the Ovsynch or the CIDR protocols in this dairy herd. In addition, primiparous cows had an increased likelihood for conception compared to multiparous cows, and cows with a low BCS were less likely to be inseminated or have a CL on Day 21, regardless of treatment.  相似文献   

5.
The objective was to compare two protocols for synchronizing ovulation in lactating Holstein cows submitted to timed AI (TAI) or timed ET (TET). Within each farm (n = 8), cows (n = 883; mean ± SEM 166.24 ± 3.27 d postpartum, yielding 36.8 ± 0.34 kg of milk/d) were randomly assigned to receive either: 1) an intravaginal progesterone insert (CIDR®) with 1.9 g of progesterone + GnRH on Day -10, CIDR® withdrawal + PGF2α on Day -3, and 1 mg estradiol cypionate on Day -2 (treatment GP-P-E; nTAI = 180; nTET = 260); or 2) a CIDR® insert + 2 mg estradiol benzoate on Day -10, PGF2α on Day -3, CIDR® withdrawal + 1 mg estradiol cypionate on Day -2 (treatment EP-P-E; nTAI = 174; nTET = 269). Cows were subsequently randomly assigned to receive either TAI on Day 0 or TET on Day 7. Serum progesterone concentration on Day -3 was greater in GP-P-E than in EP-P-E (2.89 ± 0.15 vs 2.29 ± 0.15 ng/mL; P < 0.01), with no significant effect of group on serum progesterone on Day 7. Compared to cows submitted to TAI, those submitted to TET had greater pregnancy rates on Day 28 (44.0% [233/529] vs 29.7% [105/354]; P < 0.001) and on Day 60 (37.6% [199/529] vs 26.5 [94/354]; P < 0.001). However, there were no effects of treatments (GP-P-E vs EP-P-E; P > 0.10) on synchronization (87.0% [383/440] vs 85.3% [378/443]), conception (TAI: 35.3% [55/156] vs 33.8% [50/148]; TET: 50.7% [115/227] vs 51.3% [118/230]) and pregnancy rates on Days 28 (TAI: 30.5% [55/180] vs 28.7% [50/174]; TET: 44.2% [115/260] vs 43.9% [118/269]) and 60 (TAI: 27.2% [49/80] vs 25.9% [45/174]; TET: 38.8% [101/260] vs 36.4% [98/269]). In conclusion, GP-P-E increased serum progesterone concentrations on Day -3, but rates of synchronization, conception, and pregnancy were not significantly different between cows submitted to GP-P-E and EP-P-E protocols, regardless of whether they were inseminated or received an embryo.  相似文献   

6.
Body condition may influence pregnancy rates to a timed insemination (Ovsynch/TAI) protocol and affect the economical performance of dairy farms. The objectives were to compare pregnancy rates using the Ovsynch/TAI protocol for the first service of lactating dairy cows with body condition scores < 2.5 (scale: 1 to 5, low BCS group) versus > or = 2.5 (control group) and to estimate the economic impact of the effect of body condition on reproductive performance. At 63 +/- 3 d post partum, cows were assigned to 2 experimental groups (low BCS = 81; control = 126), and were treated with GnRH at d 0 and with PGF2alpha 7 d later. At 48 h after PGF2alpha, cows received an injection of GnRH and were inseminated 16 h later. Pregnancy rates to the Ovsynch/TAI protocol were lower for the low BCS group than for the control group at 27 d (18.1 +/- 6.1% < 33.8 +/- 4.5%; P<0.02) and at 45 d (11.1 +/- 5.4% < 25.6 +/- 4.1%; P<0.02) after insemination. Economic analysis indicated that reducing the percentage of the herd in low body condition increases net revenues per cow per year. Body condition influenced pregnancy rates to the Ovsynch/TAI protocol.  相似文献   

7.
The objective of this study was to determine the effect of GnRH (100 microg i.m.) treatment 5 and 15 days after timed insemination (TAI) on pregnancy rate and pregnancy loss in lactating dairy cows subjected to synchronization of ovulation. The study included 831 lactating dairy cows subjected to a Presynch-Ovsynch protocol for first service. On the day of TAI (Day 0), cows were randomly assigned to one of four experimental groups. Cows in Group 1 (n = 214) were treated with GnRH on Day 5; cows in Group 2 (n = 209) were treated with GnRH on Day 15; cows in Group 3 (n = 212) were treated with GnRH on both Day 5 and Day 15; cows in Group 4 (n = 196) were not treated. Pregnancy rate was evaluated at Day 27 and Day 45 after TAI. The interestrus interval and the proportion of cows diagnosed not pregnant based on expression of estrus and insemination before pregnancy diagnosis on Day 27 were determined. The results of this study are: (1) GnRH treatment on Day 5 or Day 15 did not increase pregnancy rate, or reduce pregnancy loss between Day 27 and Day 55 after TAI; (2) cows treated with GnRH on both Day 5 and Day 15 had a lower (P < 0.01) proportion of cows diagnosed not pregnant based on expression of estrus before ultrasonography on Day 27 (26.5%) compared to control cows (52.9%), and these cows had an extended (P = 0.05) interestrus interval (23.4 days vs. 21.5 days); and (3) GnRH treatment on both Day 5 and Day 15 after TAI reduced pregnancy rate on Day 27 (36.8% vs. 44.4% for control cows; P < 0.03) and Day 55 (28.3% vs. 36.2% for control cows; P < 0.01). Therefore, strategies to stimulate CL function using multiple doses of GnRH during the luteal phase need to consider potential negative effects.  相似文献   

8.
A total of 226 out of 245 postpartum lactating dairy cows in a commercial dairy farm were allocated to two groups of oestrous synchronisation protocols in order to evaluate reproductive performance. One group was treated with oestradiol benzoate (ODB) and PGF2alpha on day 10 of the oestrous cycle with insemination at the detected oestrus, the second group underwent the Ovsynch (OVS) protocol (GnRH + PGF2alpha + GnRH) with timed AI. Pregnancy was diagnosed by ultrasonography on day 28 after AI and confirmed by rectal palpation on day 45. A higher (P < 0.001) proportion of cows in OVS (100%) were inseminated within (19.2 +/- 3.8 h) following the second GnRH injection than those of cows in EPE (ODB + PGF2alpha + ODB) (70.6%) inseminated at the detected oestrus within (35.6 +/- 5.2 h) following the second ODB injection. Pregnancy rates for the first AI at day 28 (64.0 +/- 4.6, 62.4 +/- 5.5%) and at day 45 post-insemination (40.4 +/- 4.7, 40.0 +/- 5.6%) for OVS and EPE cows respectively, did not differ between the two treatments, whereas, the overall pregnancy rates tended to be higher (P < 0.08) for the OVS (85.1 +/- 3.8%) cows than the EPE cows (74.1 +/- 4.5%). No differences were observed in pregnancy rates for first AI and overall up to fourth AI between primiparous (34.7 +/- 5.8 and 85.3 +/- 4.7%) and multiparous cows (43.5 +/- 4.5 and 77.4 +/- 3.6%). Days open for pregnant cows tended to be lower (P < 0.08) for OVS (76.2 +/- 3) than for EPE cows (84.7 +/- 4), while days open were higher (P < 0.05) in primiparous cows (85.3 +/- 4) than in multiparous cows (75.6 +/- 3). The results indicate that pregnancy rates for first AI were similar, but overall pregnancy rates up to the fourth AI tended to be higher for OVS than EPE cows, while days open was tended to be lower for OVS than EPE cows.  相似文献   

9.
Our objective was to determine the feasibility of prompt reinsemination of dairy cows when diagnosed not pregnant 27-29 days after first-service timed AI (TAI). We assumed that a first-wave dominant follicle was present at that time that would ovulate in response to GnRH once precocious luteal regression was induced after administration of PGF(2alpha). Cows that had not been detected in estrus and reinseminated by Days 27-29 after a first-service TAI were diagnosed not pregnant by ultrasonography. Nonpregnant cows from three herds were assigned randomly to receive either no further treatment until reinsemination (controls; n=189); 25mg i.m. of PGF(2alpha) and then reinsemination according to detected estrus (81 of 108) or at 72-80h after PGF(2alpha) treatment (PGF) in the absence of estrus (27 of 108); or 25mg i.m. of PGF(2alpha) followed by 100 microg i.m. of GnRH 48h later (PGF+GnRH) and then reinsemination after detection of estrus (9 of 160) or at 16-20h after GnRH (151 of 160). Blood samples were collected at the time of the not-pregnant diagnosis and again 48h later. Concentrations of progesterone before treatment with PGF(2alpha) were elevated (<1ng/ml) in 61% of the cows when PGF(2alpha) was administered and 81% of the cows given PGF(2alpha) had low (<1ng/ml) concentrations of progesterone 48h after PGF(2alpha). Treated cows were re-inseminated earlier (P<0.01; 31+/-1days) after first-service TAI than controls (55+/-1days). Conception rates after treatment were not different among treatments: PGF (22%), PGF+GnRH (23%), and control (23%). Average intervals from calving to conception were 22-23 days less (P<0.001) in treated cows than in controls. We concluded that treating nonpregnant cows with PGF(2alpha) on Days 27-29 after insemination produced acceptable conception rates when inseminations were made after detected estrus or when TAI was used after GnRH treatment. Further, both treatments reduced days between first-service TAI and second inseminations, and days from calving to conception.  相似文献   

10.
We wished to compare the effect of summer heat stress on pregnancy rate in cows that were inseminated at a set interval associated with a synchronized ovulation vs those inseminated upon routine estrus detection. The study was carried out on a commercial dairy farm in Florida from May to September 1995. Lactating dairy cows were given PGF2 alpha (25 mg i.m.) at 30 + 3 d postpartum and randomly assigned to be inseminated at a set time (Timed group) or when estrus was detected (Control group). Cows in the Timed group were synchronized by sequential administration of Buserelin (8 micrograms i.m.) on Day 0 at 1600 h, PGF2 alpha (25 mg i.m.) on Day 7 at 1600 h and Buserelin (8 micrograms i.m.) on Day 9 at 1600 h. They were inseminated on Day 10 between 0800 and 0900 h (Day 9 + 16 h). Cows in the Control group were given PGF2 alpha at 57 + 3 d postpartum and inseminated when detected in estrus. Estrus detection or insemination rate for control insemination cows was 18.1 +/- 2.5% versus 100% for time inseminated cows (P < 0.01). Mean interval from PGF2 alpha to insemination was shorter for time inseminated cows (3 +/- 2.1 d < 35.5 +/- 1.9 d; P < 0.01). Pregnancy rate was greater for time inseminated cows (13.9 +/- 2.6 > 4.8 +/- 2.5%; P < 0.01) as was overall pregnancy rate by 120 d postpartum (27.0 +/- 3.6 > 16.5 +/- 3.5%; P < 0.05). Number of days open for cows conceiving by 120 d postpartum was less for time inseminated cows (77.6 +/- 3.8 < 90.0 +/- 4.2 d; P < 0.05), as was interval to first service (58.7 +/- 2.1 < 91.0 +/- 1.9 d; P < 0.01). Services per conception were greater for time inseminated cows (1.63 +/- 0.10 > 1.27 +/- 0.11; P < 0.05). The timed insemination program did improve group reproductive performance. However, the timed insemination program will not protect the embryo from temperature-induced embryonic mortality, but management limitations induced by heat stress on estrus detection are eliminated. An economical evaluation of the timed insemination program indicates an increase in net revenue per cow with implementation of timed insemination for first service during the summer months.  相似文献   

11.
Objectives were to determine factors associated with conception rate (CR) and pregnancy loss (PL) in high producing lactating Holstein cows. In Study 1, CR was evaluated in 7633 artificial inseminations (AI) of 3161 dairy cows in two dairy farms. Pregnancy diagnosis was performed by palpation per rectum 39+/-3 days after AI. Environmental temperature was recorded at different intervals prior to and after AI. In Study 2, 1465 pregnancies from 1393 cows diagnosed at 31+/-3 days after AI by ultrasonography on three dairy farms were re-examined 14 days later to determine PL. Temperature > or =29 degrees C was considered to be heat stress (HS). Exposure to HS was defined as following: NH, no heat stress; HS1, exposure to at least 1 day of maximum temperature > or =29 degrees C and average daily maximum temperature (ADMT) <29 degrees C; and HS2, exposure to ADMT > or =29 degrees C. In Study 1, exposure of cows to HS1 and HS2 from 50 to 20 prior to AI was associated with reduced CR compared to cows not exposed to HS (28.8, 23.0, and 31.3%, respectively). Post-AI HS was not associated with CR. Cows inseminated following estrus detection or timed AI had similar CR. As the number of AI increased, CR decreased. Multiparous cows had lower CR than primiparous cows, and occurrence of milk fever and retained placenta was associated with decreased CR. In Study 2, PL was not associated with exposure to HS either prior to or after AI. Cows diagnosed with clinical mastitis experienced increased PL, but parity, number of AI, AI protocol, milk production, and days postpartum at AI were not associated with PL. In conclusion, CR was affected by HS prior to AI, parity, number of AI, and postparturient diseases, whereas PL was affected by clinical mastitis.  相似文献   

12.
Ovulatory response to the first GnRH of Ovsynch is a very important factor for determining the outcome of a successful synchronization. The aim of the present study was to develop a protocol to increase the percentage of cows that ovulated in response to the first administration of Ovsynch. This study was designed to compare ovulation rates in response to GnRH or hCG at the beginning of Ovsynch and to evaluate the effects of this manipulation on pregnancy. Cows (n = 371) with corpus luteum (CL) and at least one follicle greater than 10 mm diameter size on either ovary were included in the study. Cows were divided into two groups. The Ovsynch protocol began with GnRH (10 μg) in the GPG group (n = 161; GnRH-7d-PGF2α-56h-GnRH-18h-AI), whereas in the HPG group, the first GnRH of the Ovsynch was replaced with 1500 IU hCG (n = 210; hCG-7d-PGF2α-56h-GnRH-18h-AI). Ovarian ultrasonography was performed at the times of GnRH or hCG and of PGF2α administration, at the time of artificial insemination (AI) and seven days after AI, to determine ovulation. Maximal follicle size at the beginning of the Ovsynch did not affect on response to the first GnRH/hCG treatment. Conception rate (31 d) was 0.6 times more likely to be higher (P < 0.001) in cows that responded to the first hormonal administration of Ovsynch than in those that did not respond (95% CI = 0.29-0.71). Conception rate was found to be different between the HPG (37.6%, 79/210) and the GPG groups (48.4%, 78/161). Thus, beginning of the Ovsynch protocol with hCG did not increase ovulation and conception rate in lactating dairy cows, suggesting that hCG is not a suitable replacement of the first GnRH of Ovsynch. However, our results do show that increasing the ovulation rate in response to the first hormonal administration of Ovsynch can have a significant effect on conception rate.  相似文献   

13.
To determine the efficacy of reducing the dosage of GnRH used in a protocol for synchronization of ovulation and timed AI, primiparous and multiparous lactating Holstein cows (n=237) were randomly assigned to 1 of 2 treatment groups. Ovulation was synchronized for cows in the first group using intramuscular injections of GnRH and PGF2 as follows: Day 0, 100 μg GnRH; Day 7, 25 mg PGF2; Day 9, 100 μg GnRH. Ovulation was synchronized in the second group of cows using the same injection schedule and dosage of PGF2 but only 50 μg GnRH per injection. All cows underwent a timed AI at 12 to 18 h after the second GnRH injection. The proportion of cows ovulating in response to the second GnRH injection (synchronization rate) and pregnancy status at 28 and 56 d post AI were determined using transrectal ultrasonography. The synchronization rate, double-ovulation rate, conception rate at 28 and 56 d post AI, and pregnancy loss from 28 to 56 d post AI did not differ statistically between treatment groups. For all cows, synchronization rate was 84.0%, and double-ovulation rate was 14.1%. Conception rates calculated using all cows receiving synchronization of ovulation were 41.1% at 28 d and 34.4% at 56 d post AI. Conception rates calculated for only synchronized cows were 47.6% at 28 d and 40.1% at 56 d post AI. For all cows, pregnancy loss from 28 to 56 d post AI was 13.5%, with an attrition rate of 0.5% per day. Estimated savings in hormone costs using 50 rather than 100 μg GnRH per injection for synchronizing ovulation were $6.40 per cow and $20.27 per pregnancy. Thus, decreasing the dosage of GnRH used for synchronization of ovulation and timed AI in lactating dairy cows reduces synchronization costs per cow and per pregnancy without compromising the efficacy of the synchronization protocol.  相似文献   

14.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

15.
Conception rates (CR) are low in dairy cows and previous research suggests that this could be due to impaired early embryonic development. Therefore, we hypothesized that CR could be improved by embryo transfer (ET) compared with AI. During 365 days, 550 potential breedings were used from 243 lactating Holstein cows (average milk production, 35 kg/day). Cows had their ovulation synchronized (GnRH-7d-PGF(2alpha)-3d-GnRH) and they were randomly assigned for AI immediately after the second GnRH injection (Day 0) or for transfer of one embryo 7 days later. Circulating progesterone concentrations and follicular and luteal size were determined on Days 0 and 7. Pregnancy diagnosis was performed on Days 25 or 32 and pregnant cows were reevaluated on Days 60-66. Single-ovulating cows with synchronized ovarian status had similar CR on Days 25-32 with ET (n = 176; 40.3%) and AI (n = 160; 35.6%). Pregnancy loss between Days 25-32 and 60-66 also did not differ (P = 0.38) between ET (26.2%) and AI (18.6%). When single (n = 334) and multiple (n = 57) ovulators were compared, independent of treatment, multiple ovulators had greater (P < 0.001) circulating progesterone concentrations on Day 7 (2.7 ng/ml versus 1.9 ng/ml) and there was a tendency (P = 0.10) for a greater CR in multiple ovulators (50.9% versus 38.1%). However, there was no difference in CR between AI and ET cows with multiple ovulations (50.0% versus 51.7%). In single-ovulating cows, CR tended to be lower for AI than ET in cows ovulating smaller follicles (diameter < or = 15 mm; 23.7% versus 42.3%; P = 0.06) but not average-diameter follicles (16-19 mm; 41.2% versus 37.3%; P = 0.81) or larger (> or =20 mm; 34.3 versus 51.0%; P = 0.36) follicles. Thus, although ET did not improve overall CR in lactating cows, follicle diameter and number of ovulating follicles may determine success with these procedures.  相似文献   

16.
The aim of this study was to evaluate the effect of presynchronization with or without the detection of estrus on first service pregnancy per artificial insemination (P/AI) and on Ovsynch outcome in lactating dairy cows. A total of 511 cows were divided randomly but unevenly into 3 treatment groups at 44 to 50 days in milk (DIM). Ovsynch was started at the same time (69 to 75 DIM) in all three groups. Cows in the Ovsynch group (CON, N = 126) received no presynchronization before Ovsynch, and all cows were bred by timed AI (TAI). Cows in the presynchronization with estrus detection (PED) and the presynchronization with only TAI (PTAI) groups received two doses of prostaglandin F (PGF) 14 days apart, starting at 44 to 50 DIM. Ovsynch was initiated 11 days after the second PGF treatment. Cows in the PED group (N = 267) received AI if estrus was detected after either PGF injection. Cows that were not determined to be in estrus after PGF injection received Ovsynch and TAI. Cows in the PTAI group (N = 118) were not inseminated to estrus, with all cows receiving TAI after Ovsynch. The ovulatory response to the first GnRH injection administered as part of Ovsynch differed (P = 0.002) among treatment groups (83.1% in PTAI, 72.6% in PED, and 62.7% in CON). However, the ovulatory response to the second injection of GnRH during Ovsynch did not differ among treatment groups. Of the 267 PED cows, a total of 132 (49.4%) exhibited estrus and were inseminated. The P/AI at the 31-day pregnancy diagnosis was similar between the cows in the PED group with AI after estrus detection (37.9%; 50/132) and those bred with TAI (34.1%; 46/135). The P/AI in the CON group (46.8%; 59/126) was greater (P < 0.05) than that in the PED group (36.0%; 96/267). In addition, the P/AI in the CON group was greater (P = 0.04) than that in the PED cows receiving TAI (34.1%; 46/135) but less than that in the PED cows bred to estrus (37.9%; 50/132) (P = 0.16). At the 31-day pregnancy diagnosis, the cows in the PTAI group had greater P/AI (55.9%; 66/118) than both those in the PED group (P < 0.01; either estrus or TAI) and those in the CON group (P = 0.08). Thus, presynchronization with PGF (PTAI) increased the ovulatory response to Ovsynch and improved P/AI in dairy cows. Interestingly, the breeding of cows to estrus during presynchronization reduced fertility to the TAI and overall fertility, including cows bred to estrus and TAI. These results indicate that maximal fertility is obtained when all cows receive TAI after the presynchronization protocol.  相似文献   

17.
The effect of using a dose of 50 micro g rather than 100 micro g fertirelin in an ovulation/fixed-time insemination protocol for Holstein-Friesian dairy cows was investigated in three experiments. In each experiment, fertirelin was administered at the beginning of the protocol followed 7 days later by 500 micro g cloprosterol. Two days later, a second dose of fertirelin was given and AI performed 16-19 h later regardless of the incidence of behavioral oestrus.The effect on conception rate was studied in experiment 1 using 114 postpartum anoestrus cows. There was no significant difference in the age, parity or number of days after parturition in each treatment groups. The conception rate did not differ between the 50 micro g fertirelin group (61.1%; n=72) and the 100 micro g group (59.5%; n=42; NS). In experiment 2, a further 12 cows at 40-60 days postpartum were treated with 100 or 50 micro g fertirelin (n=6 per dose) with treatment commencing in the follicular or luteal phase of the oestrous cycle. The plasma concentration of luteinizing hormone (LH) reached similar peaks of over 5 ng/ml 120 min after the intramuscular administration of fertirelin in both groups. There were no significant differences in LH levels between treatments or phase of the oestrous cycle when treatment commenced. Doses of 50 and 100 micro g fertirelin were compared in experiment 3 using 17 cows to study follicular wave development and synchronization by transrectal ultrasonography, conception rate and corpus luteum function. There were no significant differences between treatments for these factors.It was concluded that using a dose of 50 micro g fertirelin enabled the drug costs to be reduced without affecting the efficiency of a synchronization of ovulation/fixed-time AI protocol for dairy cows.  相似文献   

18.
The objective was to compare conception rates to embryo transfer relative to AI, during summer heat stress, in lactating dairy cows. Holstein cows (n = 180; 50 to 120 d postpartum) were allocated randomly to 1 of 3 groups: artificial insemination (AI, n = 84), embryo transfer using either embryos collected from superovulated donors (ET-DON, n = 48), or embryos produced in vitro (ET-IVF, n = 48). Embryos from superovulated donors were frozen in 10% glycerol and were rehydrated in a 3-step procedure, in decreasing concentrations of glycerol in a sucrose medium before transfer. Embryos produced in vitro were frozen in 1.5 M ethylene glycol, thawed and transferred without rehydration. Blood samples were collected from AI and ET recipients on Days 0, 7 and 22 for measurement of progesterone in plasma. Conception rate was estimated for the three groups at Day 22 (progesterone > 1 ng/mL) and confirmed at Day 42 by palpation per rectum. Conception rate estimates at Day 22 did not differ among groups (AI, 60.7%; ET-DON, 60.4%; ET-IVF, 54.2%), but conception rates at Day 42 differed (AI, 21.4%; ET-DON, 35.4%; ET-IVF, 18.8%; AI versus ET: P > 0.10 and ET-DON versus ET-IVF: P < 0.05). In cows considered pregnant at 22 d but diagnosed open at 42 d, the interestrous intervals were 28.8 +/- 2.2, 35.2 +/- 3.5 and 31.6 +/- 2.9 d, respectively, for AI, ET-DON and ET-IVF groups. Transfer of embryos collected from nonheat-stressed superovulated donors significantly increased conception rates in heat stressed dairy cattle. However, transfer of IVF-derived embryos had no advantage over AI. Where appropriate mechanisms are in place to attenuate the effects of heat stress, embryo transfer using frozen-thawed donor embryos increases conception rates.  相似文献   

19.
After 80 years of the commercial application of artificial insemination (AI) in the cow, the method still has numerous benefits over natural insemination including worldwide gene improvement. The efficiency of insemination depends, among many other factors, on the delivery of an appropriate number of normal spermatozoa to the appropriate reproductive tract site at the appropriate time of estrus. The metabolic clearance of steroid hormones and pregnancy associated glycoproteins and the negative effects of different types of stress related to high milk production makes the high-producing dairy cow a good animal model for addressing factors affecting fertility. Nevertheless, extensive studies have shown a positive link between high milk production in an individual cow and high fertility. When a cow becomes pregnant, the effect of pregnancy loss on its reproductive cycle is also a topic of interest. This paper reviews the factors of a noninfectious nature that affect the fertility of lactating dairy cows following AI. Special attention is paid to factors related to the cow and its environment and to estrus confirmation at insemination. Pregnancy maintenance during the late embryonic/early fetal period is discussed as a critical step. Finally, the use of Doppler ultrasonography is described as an available research tool for improving our current understanding of the health of the genital structures and conceptus.  相似文献   

20.
The objective of this study was to test the efficacy of induction of estrus, synchronization of ovulation and timed artificial insemination in anestrous yaks using the Heatsynch protocol. In Experiment 1, 10 anestrous yaks were administered an analogue of gonadotropin releasing hormone (GnRH) followed by prostaglandin (PG)F2alpha 7 days later and then estradiol cyponate (ECP) 24 h after that. Ovulation was detected by rectal palpation at 2h intervals beginning at the initial signs of estrus. Blood samples were collected at 2h intervals beginning at the time of ECP injection up to 2h after the occurrence of ovulation for the determination of LH and progesterone. All the animals responded to the Heatsynch protocol with expression of estrus and synchronization of ovulation. The mean time interval from the ECP injection to ovulation was 59.4+/-2.62 h (range 50-72 h). The interval from the LH peak to ovulation was 30.2+/-2.3 h. The high degree of synchrony in ovulation could be attributed to the synchrony in the timing of LH peaks. In Experiment 2, 10 anestrous yaks were treated with the Heatsynch protocol (as in Experiment 1) and TAI was performed at 48 and 60 h after the ECP treatment. Concurrently, 16 cycling yaks were inseminated approximately 12 h after detection of spontaneous estrus. Pregnancy rates were similar in both groups, 40% for TAI and 43.75% for yaks inseminated following spontaneous estrus (p>0.05). From this study, two conclusions can be drawn. First, the Heatsynch protocol can be successfully used to induce and synchronize estrus in anestrous yaks and, second, ovulation following the Heatsynch protocol is synchronized adequately to permit the use of fixed time AI in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号