首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progeny from transgenic broccoli (cv. Green Comet) expressing a Trichoderma harzianum endochitinase gene were used to assess the interaction between endochitinase and the fungicide Bayleton in the control of Alternaria brassicicola. In vitro assays have shown synergistic effects of endochitinase and fungicides on fungal pathogens. Our study examined the in planta effects of endochitinase and Bayleton, individually and in combination. Two month old transgenic and non-transgenic plants were sprayed with ED50 levels of Bayleton and/or inoculated with an A. brassicicola spore suspension. Disease levels in non-sprayed transgenic plants were not statistically different from sprayed transgenic plants nor from sprayed non-transgenic controls. Thus endochitinase-transgenic plants alone provided a significant reduction of disease severity, comparable to the protection by fungicide on non-transgenic plants. Comparison of the expected additive and observed effects revealed no synergism between endochitinase and Bayleton (at ED50 level), and usually less than an additive effect. Some transgenic lines sprayed with fungicide at doses higher than ED50 showed resistance similar to the non-sprayed transgenic lines, again suggesting no synergistic effect. Lack of synergism may be due to incomplete digestion of the cell wall by endochitinase, so that the effect of Bayleton at the cell membrane is not enhanced.  相似文献   

2.
An aqueous suspension of Nosema marucae spores was sprayed on foliage of sorghum plants that had been infested with neonate Chilo partellus larvae at 3, 5, 7 and 9 weeks after (plant) emergence (WAE). These periods corresponded to plants at the tillering, early booting, soft dough and late maturation phenological stages, respectively. The extent of borer infestation and plant damage was monitored until crop harvest, and compared with plants which had been similarly infested but not sprayed with the pathogen, and with plants in insect‐free control plots. When applied early, infestation with neonate borer larvae caused most damage to the plants and the greatest reduction in yield in the untreated plots. Early treatment with N. marucae spores at 3 and 5 WAE resulted in the greatest reduction in damage to plants and the highest improvement in yield of seeds. It is apparent, therefore, that for maximum crop protection the microsporidian needs to be applied when sorghum is in an early phenological stage.  相似文献   

3.
A field trial was conducted to study the response of sunflower (Helianthus annuus L.) to different phosphorus levels (16, 24 or 32 kg P ha–1) and inoculation with vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum on vertisol during summer 1993. At the vegetative stage of sunflower, percent mycorrhizal root colonization, spore count, dry biomass and P uptake did not differ significantly between inoculated and uninoculated control plants. However, at later stages (flowering and maturity) percent root colonization, spore count, total dry biomass and total P uptake were significantly higher in inoculated plants than in uninoculated control plants. The total dry biomass, P content and seed yield increased with increasing P level in uninoculated plants, whereas no significant difference was observed between 16 and 32 kg P ha–1 in inoculated plants. The positive effect of mycorrhizal inoculation decreased with increasing P level above 16 kg P ha–1, due to decreased percent root colonization and spore count at higher P levels.  相似文献   

4.
Maize plants were inoculated withGlomus constrictum in soil of low phosphorus content amended with five rates of P in the form of Ca3(PO4)2. Maize dry matter yield was increased by addition of P up to 30 and/or 60 mg P/kg soil, above that it began to decrease to reach at 100 mg P/kg a value similar to that of the control. At all P levels used, the shoot and root (total plant) dry mass of inoculated plants was significantly increased compared with the non-inoculated controls and this increment ranged in some cases between 50 and 70%. Development of vesicular-arbuscular mycorrhizal fungus (VAM) monitored in terms of P contents in dry matter of maize revealed that the P content of plants not inoculated withG. constrictum was not influenced by P addition to soil. On the other hand, P content of maize plants inoculated with VAM was dramatically increased by increasing P levels of soil and was maximum at 30 mg P; above that it began to decline. Mycorrhizal root infection (expressed as percentage of root length infected) increased by increasing the P concentrations above the soil basal level up to 80 mg P where the infected root length was 72% of the total root length after 28 d of planting. The increase in VAM spore formation in soil was similar to that of root infection except that the highest spore number was sieved from soil at 60 mg P/kg soil.  相似文献   

5.
Flavones and isoflavones are a major group of phenolic secondary metabolites which occur in leaves of narrow leafed lupine (Lupinus angustifolius) either as free aglycones or in a form of glycosides and malonyl-glycosides. Profiles of phenolic compounds in leaves of seedlings infected with anthracnose causing fungus Colletotrichum lupini were compared to those of healthy plants. A HPLC with diode array UV detector was used as the analytical method and identification of these secondary metabolites was confirmed with a HPLC/MSn instrument. Isomers of several target compounds differing in the glycosilation and/or malonylation pattern were detected in the studied samples. However, the application of standard HPLC with C18 columns resulted in the co-elution of several glyconjugates in single chromatographic peaks whereas for isoflavonoid aglycones complete resolution was achieved. Lupine plants grown in a greenhouse were either sprayed with the C. lupini spore suspension or the suspension was spotted on to wounded leaves. Profiles of the isoflavones were altered in result to infection with both methods. In particular, the concentration of isoflavone free aglycones detected in extracts from diseased plants was substantially increased in all of the studied samples. However, the pattern of these compounds depended on the age of lupine leaves as well as on the method of infection. Synthesis of luteone and 2′-hydroxygenistein was enhanced in the youngest leaves of plants sprayed with spores as well as in wound-infected leaves. Wighteone synthesis was induced mainly in older leaves of plants sprayed with the spore suspension.  相似文献   

6.
The efficiency of some inducer resistance chemicals (IRCs) like bion, chitosan, humic acid and salicylic acid as well as the fungicides like Folu-Gold, Galben Copper, Previcure-N and Redomil Gold Mancozeb on management of sweet melon downy mildew, caused by Pseudoperonospora cubensis was evaluated in vitro and in vivo. Also, the efficiency of the alternation between the sprayed two fungicides and IRCs on management of the disease and the produced fruit yield and its total soluble solids (TSS) under field conditions were assessed. The inhibitory effect of the IRCs and the tested fungicides on sporangial germination of P. cubensis resulted in a significant reduction in the germinated sporangia. In addition, IRCs were less effective than the fungicides. Disease management revealed the same trend of the in vitro experiment when they sprayed fungicides on sweet melon plants artificially inoculated with the sporangia of the causal fungus under greenhouse conditions. Furthermore, under field conditions, spraying sweet melon plants with the two tested fungicides was the most efficient in decreasing the disease and increasing fruit yield and its TSS, to somewhat, followed by the alternation between them and the tested IRCs. In addition, IRCs treatments showed the lowest efficiency in this regard.  相似文献   

7.
Trichoderma spp. have been used as biocontrol agents to protect plants against foliar diseases in several crops, but information from field assays is scarce. In the present work, experiments were carried out to determine the effect of six isolates of Trichoderma harzianum and one isolate of T. koningii on the incidence and severity of tan spot, caused by Pyrenophora tritici-repentis (anamorph: Drechslera tritici-repentis) under field conditions. Significant differences between years, wheat cultivars and treatments were found. In 2003, two of the isolates assayed (T5, T7) showed the best performance against the disease applied as seed treatments or sprayed onto wheat leaves at different stages. The application of six of the treatments on wheat plants significantly reduced disease severity by 16 to 35% in comparison with the control. Disease control provided by isolate T7 was similar to that provided by the fungicide treatment (56% reduction). This is the first report on the efficacy of Trichoderma spp. against tan spot under field conditions in Argentina.  相似文献   

8.
Abstract

Growth, nutrient content and nodulation response of cowpea plants (Vigna unguiculata L. Walp) inoculated with a Arbuscular Mycorrhiza (AM) fungus (Glomus etunicatum) and Bradyrhizobium (BR) strain IRC 25B peat-based were assessed on an alfisol in a two-cropping cycle experiment conducted in the greenhouse. A total of 5 kg sieved unsterilized topsoil plastic pots was amended with compost consisting of 2.4% N, 1.7% P, 2.7% Ca, 0.4% Mg and 0.7% Fe. Analysis from this first cropping cycle showed that all cowpea plants were infected with mycorrhiza in both AM inoculated and uninoculated treatments. However, all the AM inoculated plants had higher infections than the uninoculated cowpea plants. Nevertheless, nodule number and nodule weight of cowpea plants generally increased in response to compost application when used alone, or when combined with BR or AM; except for nodule weight of BR + Compost treatment. At 13 weeks after planting, the plants were harvested for a second cropping cycle experimental analysis. Results showed higher mycorrhizal infections in all the treatments inoculated with AM. However, infection was highest in cowpea plants treated with AM + BR + Compost, followed by those treated with AM + BR. This shows an increase in the number of AM propagules during the period of cropping. All other parameters measured were found generally lower in their mean values compared to the first cropping cycle. It was observed in this study that compost applications with AM inoculation could substitute for inorganic fertilizer. Thus, tropical countries should direct their efforts towards making the best use of AM to improve conditions for the peasant farmers that account for over 70% agricultural productivity in the region.  相似文献   

9.
Experiments were performed under greenhouse conditions to control bacterial wilt of potato (potato brown rot), caused by Ralstonia solanacearum race 3 biovar 2, Phylotype II, sequevar 1 using various biocontrol strategies. These strategies involved the use of the bacterial biocontrol agent Stenotrophomonas maltophilia (PD4560), in clay or sandy soils, planted with cowpea, maize or tomato which was grown separately in different pots in the inoculated soils. After harvest, the soil derived from each cultivated crop was inoculated with a mixture of three virulent R. solanacearum strains (K3, K10 and K16) to achieve a final concentration of 5 × 10cfu/g dry soil and used in pots under greenhouse conditions to cultivate potato seed tubers. The highest survival of S. maltophilia in soil (more than 160 days) coincided with a remarkable suppressing effect on disease incidence caused by R. solanacearum that expressed by wilt severity (up to 100% reduction), area under disease progress curve (AUDPC) (up to 99% reduction) and counts of the pathogen in soil (up to 75% reduction), rhizosphere (up to 80% reduction) and plant tissue (up to 97% reduction) of potato plants. The amino acid analysis of root exudates of crops under investigation revealed high percentages of asparagines (15.5–21%), glutamine (16–20%) and sulphur‐containing methionine (7–9%) in both of the cowpea and maize, respectively. In tomato root exudates, high percentages of arginine (around 26%) and lysine (around 23%) were detected. Methionine is known to favour the growth of S. maltophilia suggesting that especially cowpea and maize are suitable for crop rotation with potato and will enhance the sustainability of the biocontrol agent S. maltophilia.  相似文献   

10.
In this investigation, the effects of powdery mildew disease [caused by Podosphaera fusca (syn. Sphaerotheca fuliginea)] on specific activities of several defense-related enzymes and phenolic content were studied in cucumber leaves. Spore suspension of the fungus was sprayed on cucumber (cv. Super Dominus) plants in greenhouse and leaves from both inoculated and non-inoculated control plants were sampled at 0, 24, 48, 72 and 144 hours after inoculation (HAI). Spore germination and tissue colonization of P. fusca were microscopically studied on the inoculated surface of leaf samples. Further, Phenolic content (PHE) and specific activities of peroxidase (POX), chitinase (CHI) and phenylalanine ammonia-lyase (PAL) were spectrophotometrically measured in leaf extracts. Time-course of disease progress on the leaf surface showed that maximum spore germination occurred within 24 HAI and host penetration and disease development process began during 24-48 HAI. Evaluation of enzyme activities showed that POX specific activity in inoculated plants significantly increased at 72 HAI onwards and reached 2.5 times of that of control at 144 HAI. CHI specific activity showed a transient reduction in inoculated plants between 48-72 HAI and thereafter increased significantly in relation to control. PAL specific activity in inoculated plants was not significantly different from that of control. PHE in inoculated plants showed a significant increase compared to control at 48 HAI and thereafter. Comparison of time-course of disease progress with changes in enzyme activities indicated that POX activity had an increasing trend during disease progress whereas CHI activity showed a transient decrease at the early stages and then increased during the later stages of infection: PAL activity did not show any changes during the infection and PHE increased at the early stages of infection process and remained constant at rest of the time.  相似文献   

11.
Solid state fermentation was conducted for the production of L-glutaminase by Trichoderma koningii Oud.aggr. using different agro-industrial byproducts inlcuding wheat bran, groundnut residues, rice hulls, soya bean meal, corn steep, sesamum oil cake, cotton seed residues and lentil industrial residues as solid substrates. Wheat bran was the best substrate for induction of L-glutaminase (12.1 U/mg protein) by T. koningii. The maximum productivity (23.2 U/mg protein) and yield (45.0 U/gds) of L-glutaminase by T. koningii occurred using wheat bran of 70% initial moisture content, initial pH 7.0, supplemented with D-glucose (1.0%) and L-glutamine (2.0% w/v), inoculated with 3 ml of 6 day old fungal culture and incubated at 30°C for 7 days. After optimization, the productivity of L-glutaminase by the solid cultures of T. koningii was increased by 2.2 fold regarding to the submerged culture.  相似文献   

12.
13.
The wheat rhizosphere-inhabiting nonpathogenic Fusarium sambucinum isolate FS-94 protected tomato from Fusarium wilt (F. oxysporum f. sp. lycopersici) in laboratory experiments. Seed soaking or immersion of seedling roots in a FS-94 spore suspension prior to inoculation with the pathogen delayed the appearance of wilt symptoms and significantly reduced disease severity in plants of a susceptible tomato cultivar. Quantification of fungal ergosterol in infected tomato showed that protection against wilt agent was related to limitation of the pathogen growth in plants exposed to FS-94. Incubation of tomato seedlings in a FS-94 spore suspension for 48 or 72 h led to plant protection and increased the salicylic acid (SA) concentration in their roots, suggesting that this isolate was involved in a plant-mediated mode of action and induced resistance. Soaking tomato seeds in the spore suspension did not induce SA accumulation in seedling roots, but nevertheless resulted in a significant reduction in wilt severity when the seedlings were challenged with the pathogen. In response to pathogen attack, the SA content in susceptible seedlings grown from FS-94-treated seeds started to increase within 1 day and remained elevated for 72 h. This suggests that F. sambucinum isolate FS-94 primed a SA-dependent signaling system in tomato.  相似文献   

14.
Coffee is the most traded commodity in the world, and Brazil is its largest producer. Coffee leaf rust, caused by the biotrophic fungus Hemileia vastatrix, is the most important coffee disease, reducing coffee yield by 35–50%. This study aimed to use the ratio of variable and maximum fluorescence of dark‐adapted tissue (Fv/Fm) as a parameter to differentiate presymptomatic tissue from healthy tissue during disease development in plants sprayed with pyraclostrobin and epoxiconazole after 4 days postinoculation. Visual severity was considered as an indicative of apparent disease and true severity as an indicative of both apparent and non‐apparent disease. There was a significant linear relationship between the areas of true severity and visual severity, and for each additional unit in the visual severity, there was an increase of 1.53 units on the true severity. For the epoxiconazole and pyraclostrobin treatments, coffee leaf rust symptoms decreased according to both visual and Fv/Fm images. Pustules on the leaves sprayed with epoxiconazole were smaller in size than those on the leaves of non‐sprayed plants but bigger than those sprayed with pyraclostrobin. The reduction in Fv/Fm values at the pustule epicentres present on the leaves of plants sprayed with epoxiconazole, and pyraclostrobin was greater than those of the non‐sprayed plants. This finding was expected and reflects the importance of these fungicides in prohibiting the progress of coffee leaf rust. The photosynthetic capacity of Coffea arabica was affected by H. vastatrix infection, and the Fv/Fm parameter was able to show this effect before the visual symptoms were noticed.  相似文献   

15.
Inoculation with Bradyrhizobium sp. strain 127E14 has been shown to cause a dramatic increase in the internode length of lima bean (Phaseolus lunatus L.), when compared to control plants inoculated with strain 127E15. This rhizobial-induced growth also occurs in cowpea (Vigna unguiculata [L.] Walp), an alternate host for the symbiont. Cowpea plants inoculated with strain 127E14 were 23% taller than those inoculated with strain 127E14 after 6 weeks of growth. Petiole length was found to be significantly greater in plants inoculated with strain 127E14. Cowpea plants treated at the apex with exogenous GA3 or GA4/7 responded by increasing internode length when compared to controls. As in lima beans, the rhizobial-induced growth response observed in cowpeas may be in response to an imbalance in the levels of GA-like substances within the plants. Gibberellins A1, A3, A8, A19, A20, A29, and A44have been identified by GC-MS analysis in stems of cowpea, whereas the gibberellins A1, A19, A20, A29, and A44 were found to be present in nodule tissue formed by strain 127E14. The presence of these GAs indicates that the early 13-hydroxylation biosynthetic pathway is operative in cowpea. GAs identified in cowpea nodules are similar to those found in lima bean nodules formed by the same rhizobia. The finding that rhizobial strain 127E14 induces GA-dependent growth responses in two host legumes further supports the hypothesis that the presence of this bacteria alters the GA balance within the plant.  相似文献   

16.
Colonization of plant roots by fluorescent pseudomonads has been correlated with disease suppression. One mechanism may involve altered defense responses in the plant upon colonization. Altered defense responses were observed in bean (Phaseolus vulgaris) inoculated with fluorescent pseudomonads. Systemic effects of root inoculation by Pseudomonas putida isolate Corvallis, P. tolaasii (P9A) and P. aureofaciens REW1-I-1 were observed in bean leaves from 14-day-old plants. SDS- polyacrylamide gel electrophoresis demonstrated that levels of certain acid-soluble proteins increased in the leaf extracts of inoculated plants. Plants inoculated with REW1-I-1 produced more of a 57 Mr protein, and plants inoculated with isolates P9A and REW1-I-1 produced more of a 38 Mr protein. Northern hybridization revealed enhanced accumulation of mRNAs, that encode the pathogenesis-related protein PR1a, in leaves of plants inoculated with P. putida and REW1-I-1. Only REW1-I-1, but not P9A or P. putida induced symptoms of an hypersensitive response on tobacco leaves, bean cotyledons, and in bean suspension cultures. Phenolics and phytoalexins accumulated in bean cotyledons exposed to REW1-I-1 for 24 h but little change in levels of these compounds occurred in cotyledons inoculated with P9A and P. putida. Both suspension culture cells and roots treated with REW1-I-1 rapidly evolved more hydrogen peroxide than those exposed to P9A and P. putida. However, roots from 14-day-old plants colonized by P9A, P. putida or REW1-I-1 did not have higher levels of phenolics, phytoalexins or mRNAs for two enzymes involved in phenolic biosynthesis, phenylalanine-ammonia lyase and chalcone synthase. A selective induction of plant defense strategies upon root colonization by certain pseudomonads is apparent.  相似文献   

17.
Although strobilurins are one of the most effective and broad spectrum classes of systemic fungicides, they may also increase plant stress tolerance by modulating the activity of antioxidant enzymes. To address this issue, the effect of azoxystrobin (Az) on the activity of antioxidant enzymes and on the concentrations of antioxidant metabolites and oxidative stress‐related compounds was studied in rice plants (cv. Metica‐1) either inoculated or not with Bipolaris oryzae, the causal agent of brown spot (BS). The Az minimally affected the enzyme activities, but consistently increased the glutathione reduced (GSH) concentrations in the noninoculated plants. The activities of superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase and glutathione‐S‐transferase were increased upon B. oryzae infection, but such increases were greatly limited in the Az‐sprayed plants. Catalase activity decreased in the inoculated plants compared to the noninoculated plants regardless of fungicide treatment. The GSH concentration increased in response to the B. oryzae infection, and the Az‐sprayed plants sustained higher levels of GSH at advanced stages of fungal infection than did the nonsprayed plants. The inoculated plants exhibited an extensive oxidative stress as evidenced by higher concentrations of hydrogen peroxide and malondialdehyde compared to the noninoculated plants, but lower and later increases were recorded in the Az‐sprayed plants than in the nonsprayed plants. Therefore, Az greatly reduces B. oryzae‐induced oxidative stress by limiting BS development rather than by activating antioxidant enzymes. The GSH, however, seems to be Az‐modulated, and this may partially explain the constrained oxidative stress observed in the Az‐sprayed plants.  相似文献   

18.
Field studies were made in 1992 and 1993 to examine the yield components of pea inoculated with Mycosphaerella pinodes and those of healthy pea (sprayed with a mixture of flutriafol + chlorothalonil), in a split-plot design with the cv. Solara sown at different plant densities. Ascochyta blight was severe on leaves and on internodes of the basal part of the plants; pods had few lesions. The number and length of stems per plant were the same for diseased and healthy plants. The number of reproductive nodes and pods per stem were affected by disease only in 1993. In 1992 and 1993 respectively, disease caused reductions in the number of seeds per stem of 18% and 25%, and in seed size of 13.5% and 16.7%, compared with healthy plants. The harvest index and total biomass were lower in diseased than in healthy plants and seed yield was reduced by 40% in diseased plots. These results show a high relationship between the disease parameters (disease mean on stipules/nodes 8–18/ and on internodes/nodes 5–15/, percentages of stipules or internodes with a disease score 4, and percentage of stems encircled by lesions), plant density and yield reduction.  相似文献   

19.
Figueiredo  M.V.B.  Vilar  J.J.  Burity  H.A.  de frança  F.P. 《Plant and Soil》1999,207(1):67-75
Experiments were carried out to investigate the effects of different degrees of water stress on cowpea in the presence and absence of Bradyrhizobium spp. inoculation and to evaluate physiological responses to stress. The soil used was Yellow Latosol, pH 6.3 and the crop used was cowpea (Vigna unguiculata (L.) Walp.) cv. ‘IPA 204’. Stress was applied continuously by the control of matric potential (ψ m ) through a porous cup. The lowered soil ψ m had a direct effect on the N2 fixation, but the strains Bradyrhizobium introduced by inoculation in the cowpea plants were superior to the indigenous strain demonstrating the importance of inoculation in the stressed plants. At the more negative ψ m plants inoculated with the strains EI 6 formed associations of greater symbiotic efficiency which helped the cowpea plants to withstand drought stress better than the strain BR 2001 and the uninoculated control. The leghaemoglobin concentration was not inhibited in the drought-stressed plants at ψ m -70 kPa when inoculated with the strain EI 6, which confered a differential degree of drought resistance in plants. The ψ w declined in the stressed plants reaching values of -1.0 MPa which was sufficient to cause disturbance in nodulation and biomass production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Charcoal rot disease, caused by the fungus Macrophomina phaseolina, leads to significant yield losses of soybean crops. One strategy to control charcoal rot is the use of antagonistic, root-colonizing bacteria. Rhizobacteria A5F and FPT721 and Pseudomonas sp. strain GRP3 were characterized for their plant growth-promotion activities against the pathogen. Rhizobacterium FPT721 exhibited higher antagonistic activity against the pathogen on dual plate assay compared to strain A5F and GRP3. FPT721 and GRP3 gave decreased disease intensity in terms of average number of pathogen-infested plants. Lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) activities were estimated in extracts of plants grown from seeds that were treated with rhizobacteria, and inoculated with spore suspension of M. phaseolina. The activity of these enzymes after challenge with the test pathogen increased. Strains FPT721 and GRP3 exhibited maximum increases in LOX, PAL and POD activity (U mg−1 fresh leaf wt) compared to strain A5F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号