首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two recombinant Listeria monocytogenes (rLm) strains were produced that secrete the human papilloma virus-16 (HPV-16) E7 protein expressed in HPV-16-associated cervical cancer cells. One, Lm-E7, expresses and secretes E7 protein, whereas a second, Lm-LLO-E7, secretes E7 as a fusion protein joined to a nonhemolytic listeriolysin O (LLO). Lm-LLO-E7, but not Lm-E7, induces the regression of the E7-expressing tumor, TC-1, established in syngeneic C57BL/6 mice. Both recombinant E7-expressing rLm vaccines induce measurable anti-E7 CTL responses that stain positively for H-2D(b) E7 tetramers. Depletion of the CD8+ T cell subset before treatment abrogates the ability of Lm-LLO-E7 to impact on tumor growth. In addition, the rLm strains induce markedly different CD4+ T cell subsets. Depletion of the CD4+ T cell subset considerably reduces the ability of Lm-LLO-E7 to eliminate established TC-1 tumors. Surprisingly, the reverse is the case for Lm-E7, which becomes an effective anti-tumor immunotherapeutic in mice lacking this T cell subset. Ab-mediated depletion of TGF-beta and CD25+ cells improves the effectiveness of Lm-E7 treatment, suggesting that TGF-beta and CD25+ cells are in part responsible for this suppressive response. CD4+ T cells from mice immunized with Lm-E7 are capable of suppressing the ability of Lm-LLO-E7 to induce the regression of TC-1 when transferred to tumor-bearing mice. These studies demonstrate the complexity of L. monocytogenes-mediated tumor immunotherapy targeting the human tumor Ag, HPV-16 E7.  相似文献   

2.
Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8+ T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8+ T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Antigen-specific immunotherapy using DNA vaccines has emerged as an attractive approach for the control of tumors. Another novel cancer therapy involves the employment of the vascular disrupting agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA). In the current study, we aimed to test the combination of DMXAA treatment with human papillomavirus type 16 (HPV-16) E7 DNA vaccination to enhance the antitumor effects and E7-specific CD8+ T cell immune responses in treated mice. We determined that treatment with DMXAA generates significant therapeutic effects against TC-1 tumors but does not enhance the antigen-specific immune responses in tumor bearing mice. We then found that combination of DMXAA treatment with E7 DNA vaccination generates potent antitumor effects and E7-specific CD8+ T cell immune responses in the splenocytes of tumor bearing mice. Furthermore, the DMXAA-mediated enhancement or suppression of E7-specific CD8+ T cell immune responses generated by CRT/E7 DNA vaccination was found to be dependent on the time of administration of DMXAA and was also applicable to other antigen-specific vaccines. In addition, we determined that inducible nitric oxide synthase (iNOS) plays a role in the immune suppression caused by DMXAA administration before DNA vaccination. Our study has significant implications for future clinical translation.  相似文献   

4.
Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials.  相似文献   

5.
Despite the conventional treatments of radiation therapy and chemotherapy, the 5-year survival rates for patients with advanced-stage cervical cancers remain low. Cancer immunotherapy has emerged as an alternative, innovative therapy that may improve survival. Here, we utilize a preclinical HPV-16 E6/E7-expressing tumor model, TC-1, and employ the chemotherapeutic agent cisplatin to generate an accumulation of CD11c+ dendritic cells in tumor loci making it an ideal location for the administration of therapeutic vaccines. Following cisplatin treatment, we tested different routes of administration of a therapeutic HPV vaccinia vaccine encoding HPV-16 E7 antigen (CRT/E7-VV). We found that TC-1 tumor-bearing C57BL/6 mice treated with cisplatin and intratumoral injection of CRT/E7-VV significantly increased E7-specific CD8+ T cells in the blood and generated potent local and systemic antitumor immune responses compared to mice receiving cisplatin and CRT/E7-VV intraperitoneally or mice treated with cisplatin alone. We further extended our study using a clinical grade recombinant vaccinia vaccine encoding HPV-16/18 E6/E7 antigens (TA-HPV). We found that intratumoral injection with TA-HPV following cisplatin treatment also led to increased E7-specific CD8+ T cells in the blood as well as significantly decreased tumor size compared to intratumoral injection with wild type vaccinia virus. Our study has strong implications for future clinical translation using intratumoral injection of TA-HPV in conjunction with the current treatment strategies for patients with advanced cervical cancer.  相似文献   

6.
制备16型人乳头瘤病毒mE6Δ/mE7蛋白与I型人单纯疱疹病毒VP22Δ蛋白的治疗型分子内佐剂融合蛋白疫苗,并检测其免疫原性和抗肿瘤相关生物活性。通过克隆HSV-1 VP22Δ及HPV-16 mE6Δ/mE7基因,构建pET28a-VP22Δ-mE6Δ/mE7原核表达载体。重组质粒在Rosetta(DE3)宿主菌中进行诱导表达,表达蛋白经分离、复性后,通过镍离子亲和层析进行纯化,纯化蛋白经SDS-PAGE、Western blot 鉴定,并免疫BalB/C及C57BL/6小鼠,检测其免疫原性和抗肿瘤活性。结果显示,VP22Δ-mE6Δ/mE7蛋白以包涵体形式表达,分子量约为34kDa,表达量约占菌体总蛋白的45%。该蛋白免疫小鼠后血清特异性IgG、特异性淋巴细胞增殖效果及对TC-1致瘤小鼠的肿瘤治疗效果均高于无佐剂单一重组蛋白疫苗。以上结果说明,所获得的重组融合蛋白具有较好的免疫原性和抗肿瘤活性,为治疗型HPV分子内佐剂疫苗的进一步研究奠定了基础。  相似文献   

7.
Human papillomavirus (HPV) type 16 has been implicated in the etiology of cervical carcinomas, but it is unknown whether HPV-specific immunity can function in controlling the growth of HPV-associated carcinomas. We previously demonstrated that CD8+ T lymphocytes can inhibit the in vivo outgrowth of murine tumor cells transfected with the HPV-16 E7 gene and have now established a murine model to study the CTL responses to the E6 oncoprotein of HPV-16. Immunization of C3H/HeN mice with syngeneic fibroblasts expressing a transfected HPV-16 E6 gene induced regression of transplanted tumors expressing this gene. Populations of CTL isolated from the spleens of mice whose E6+ tumors had regressed were shown to specifically lyse E6+ target cells. The cytolytic activity was mediated by CD8+ CTL in a MHC restricted pattern. These data and our previous findings with transfected tumor cells expressing the E7 gene, support the conclusion that tumor cells associated with HPV-16 can be inhibited by CTL specific for molecules encoded by the HPV-16 E6 and E7 genes.  相似文献   

8.
Clinical studies suggest that responses to HPV16 E6E7L2 fusion protein (TA-CIN) vaccination alone are modest, and GPI-0100 is a well-tolerated, potent adjuvant. Here we sought to optimize both the immunogenicity of TA-CIN via formulation with GPI-0100 and treatment of HPV16+ cancer by vaccination after cisplatin chemotherapy. HPV16 neutralizing serum antibody titers, CD4+ T cell proliferative and E6/E7-specific CD8+ T cell responses were significantly enhanced when mice were vaccinated subcutaneously (s.c.) or intramuscularly (i.m.) with TA-CIN formulated with GPI-0100. Vaccination was tested for therapy of mice bearing syngeneic HPV16 E6/E7+ tumors (TC-1) either in the lung or subcutaneously. Mice treated with TA-CIN/GPI-0100 vaccination exhibited robust E7-specific CD8+ T cell responses, which were associated with reduced tumor burden in the lung, whereas mice receiving either component alone were similar to controls. Since vaccination alone was not sufficient for cure, mice bearing s.c. TC-1 tumor were first treated with two doses of cisplatin and then vaccinated. Vaccination with TA-CIN/GPI-0100 i.m. substantially retarded tumor growth and extended survival after cisplatin therapy. Injection of TA-CIN alone, but not GPI-0100, into the tumor (i.t.) was similarly efficacious after cisplatin therapy, but the mice eventually succumbed. However, tumor regression and extended remission was observed in 80% of the mice treated with cisplatin and then intra-tumoral TA-CIN/GPI-0100 vaccination. These mice also exhibited robust E7-specific CD8+ T cell and HPV16 neutralizing antibody responses. Thus formulation of TA-CIN with GPI-0100 and intra-tumoral delivery after cisplatin treatment elicits potent therapeutic responses in a murine model of HPV16+ cancer.  相似文献   

9.
The mechanisms underlying better immune protection by mucosal vaccination have remained poorly understood. In our current study we have investigated the mechanisms by which respiratory virus-mediated mucosal vaccination provides remarkably better immune protection against pulmonary tuberculosis than parenteral vaccination. A recombinant adenovirus-based tuberculosis (TB) vaccine expressing Mycobacterium tuberculosis Ag85A (AdAg85A) was administered either intranasally (i.n.) or i.m. to mice, and Ag-specific CD4 and CD8 T cell responses, including frequency, IFN-gamma production, and CTL, were examined in the spleen, lung interstitium, and airway lumen. Although i.m. immunization with AdAg85A led to activation of T cells, particularly CD8 T cells, in the spleen and, to a lesser extent, in the lung interstitium, it failed to elicit any T cell response in the airway lumen. In contrast, although i.n. immunization failed to effectively activate T cells in the spleen, it uniquely elicited higher numbers of Ag-specific CD4 and CD8 T cells in the airway lumen that were capable of IFN-gamma production and cytolytic activities, as assessed by an intratracheal in vivo CTL assay. These airway luminal T cells of i.n. immunized mice or splenic T cells of i.m. immunized mice, upon transfer locally to the lungs of naive SCID mice, conferred immune protection against M. tuberculosis challenge. Our study has demonstrated that the airway luminal T cell population plays an important role in immune protection against pulmonary TB, thus providing mechanistic insights into the superior immune protection conferred by respiratory mucosal TB vaccination.  相似文献   

10.
A variety of DNA vaccine prime and recombinant viral boost immunization strategies have been developed to enhance immune responses in humans, but inherent limitations to these strategies exist. There is still an overwhelming need to develop safe and effective approaches that raise broad humoral and T cell-mediated immune responses systemically and on mucosal surfaces. We have developed a novel mucosal immunization regimen that precludes the use of viral vectors yet induces potent T cell responses. Using hepatitis B surface Ag (HBsAg), we observed that vaccination of BALB/c mice with an i.m. HBsAg-DNA vaccine prime followed by an intranasal boost with HBsAg protein encapsulated in biologically inert liposomes enhanced humoral and T cell immune responses, particularly on mucosal surfaces. Intranasal live virus challenge with a recombinant vaccinia virus expressing HBsAg revealed a correlation between T cell immune responses and protection of immunized mice. A shortened immunization protocol was developed that was successful in both adult and neonatal mice. These results support the conclusion that this new approach is capable of generating a Th-type-1-biased, broad spectrum immune response, specifically at mucosal surfaces. The success of this design may provide a safe and effective vaccination alternative for human use.  相似文献   

11.
Human papillomavirus type 16 (HPV16) infection has been linked to the development of cervical and anal dysplasia and cancer. One hallmark of persistent infection is the synthesis of the viral E7 protein in cervical epithelial cells. The expression of E7 in dysplastic and transformed cells and its recognition by the immune system as a foreign antigen make it an ideal target for immunotherapy. Utilizing the E7-expressing murine tumor cell line, TC-1, as a model of cervical carcinoma, an immunotherapy based on the administration of an adjuvant-free fusion protein comprised of Mycobacterium bovis BCG Hsp65 linked to HPV16 E7 (HspE7) has been developed. Initial in vitro analyses indicate that immunization with HspE7 results in the induction of a type 1 immune response based on the pattern of secreted cytokines and the presence of cytolytic activity following antigenic recall. It has been previously shown that prophylactic immunization with HspE7 protected mice against challenge with TC-1 cells and that these tumor-free animals are also protected against rechallenge with TC-1 cells. The present report shows that a single therapeutic immunization with HspE7 induces regression of palpable tumors, confers protection against tumor rechallenge, and is associated with long-term survival (>253 days). In vivo studies using mice with targeted mutations in CD8 or MHC class II or depleted of CD8 or CD4 lymphocyte subsets demonstrate that tumor regression following therapeutic HspE7 immunization is CD8 dependent and CD4 independent. These studies extend previous observations on the induction of CTL by Hsp fusion proteins and are consistent with the clinical application of HspE7 as an immunotherapy for human cervical and anal dysplasia and cancer.  相似文献   

12.

Background

Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability.

Results

The transfection of CS-pEGFP NPs was efficient in CHO cells and the expression of green fluorescent proteins was well observed. In addition, NCS-DNA E7 vaccine induced the strongest E7-specific CD8+ T cell and interferon γ responses in C57BL/6 mice. Mice vaccinated with NCS-DNA E7 vaccine were able to generate potent protective and therapeutic antitumor effects against challenge with E7-expressing tumor cell line, TC-1.

Conclusions

The strong therapeutic effect induced by the Chitosan-based nanodelivery suggest that nanoparticles may be an efficient carrier to improve the immunogenicity of DNA vaccination upon intramuscular administration and the platform could be further exploited as a potential cancer vaccine candidate in humans.  相似文献   

13.
Summary Human papillomavirus (HPV) E6 and E7 are consistently expressed and are responsible for the malignant transformation of HPV-associated lesions. Thus, E6 and E7 represent ideal targets for therapeutic HPV vaccine development. We have previously used the gene gun approach to test several intracellular targeting and intercellular spreading strategies targeting HPV-16 E7. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat shock protein 70 (HSP70), calreticulin (CRT) and herpes simplex virus type 1 (HSV-1) VP22 proteins. All of these strategies have been shown to be capable of enhancing E7-DNA vaccine potency. In the current study, we have characterized DNA vaccines employing these intracellular targeting or intercellular spreading strategies targeting HPV-16 E6 for their ability to generate E6-specific CD8+ T cell immune responses and antitumor effects against an E6-expressing tumor cell line, TC-1, in C57BL/6 mice. We found that all the intracellular targeting strategies (CRT, LAMP-1, HSP70) as well as the intercellular spreading strategy (VP22) were able to enhance E6 DNA vaccine potency, although the orientation of HSP70 linked to E6 antigen in the E6 DNA vaccine appears to be important for the HSP70 strategy to work. The enhanced E6-specific CD8+ T cell immune response in vaccinated mice also translated into potent antitumor effects against TC-1 tumor cells. Our data indicate that all of the intracellular targeting and intercellular spreading strategies that have been shown to enhance E7 DNA vaccine potency were also able to enhance E6 DNA vaccine potency.  相似文献   

14.
DNA vaccines encoding the human papillomavirus type-16 (HPV-16) E6 and E7 oncoproteins genetically fused to the human herpes simplex virus type 1 (HSV-1) gD protein were tested in mice for induction of T cell-mediated immunity and protection against tumor cell challenge. Hybrid genes, generated after insertion of E6 or E7-encoding sequences into internal sites of the gD-encoding gene, were transcribed in vitro and the chimeric proteins were expressed at the surface of in vitro-transfected mammalian cells. Female C57BL/6 mice immunized with 4 intramuscular doses (100 microg of DNA/dose) of the DNA vaccines encoding E7 efficiently generated E7-specific CD8(+) T cells. Vaccination of mice with the DNA vaccines encoding the E7, or both E6 and E7, conferred complete protection to challenges from TC-1 tumor cells and partial therapeutic effect (40%) in mice inoculated with TC-1 cells on the same day or 5 days prior to the first vaccine dose.  相似文献   

15.
Summary The HPV oncoproteins E6 and E7 are consistently expressed in HPV-associated cancer cells and are responsible for their malignant transformation. Therefore, HPV E6 and E7 are ideal target antigens for developing vaccines and immunotherapeutic strategies against HPV-associated neoplasms. Recently, it has been demonstrated that codon optimization of the HPV-16 E7 gene resulted in highly efficient translation of E7 and increased the immunogenicity of E7-specific DNA vaccines. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a codon-optimized HPV-16 E6 DNA vaccine (pNGVL4a-E6/opt) and characterized the E6-specific CD8+ T cell immune responses as well as the protective and therapeutic anti-tumor effects in vaccinated C57BL/6 mice. Our data indicated that transfection of human embryonic kidney cells (293 cells) with pNGVL4a-E6/opt resulted in highly efficient translation of E6. In addition, vaccination with pNGVL4a-E6/opt significantly enhanced E6-specific CD8+ T cell immune responses in C57BL/6 mice. Mice vaccinated with pNGVL4a-E6/opt are able to generate potent protective and therapeutic antitumor effects against challenge with E6-expressing tumor cell line, TC-1. Thus, DNA vaccines encoding a codon-optimized HPV-16 E6 may be a promising strategy for improving the potency of prophylactic and therapeutic HPV vaccines with potential clinical implications.  相似文献   

16.
The E7 oncoprotein of human papillomavirus (HPV) is an ideal target for developing immunotherapeutic strategies against HPV-associated tumors. However, because protein-based immunogens alone are poor elicitors of the cytotoxic T-lymphocyte (CTL) responses, they have been difficult to exploit for therapeutic purposes. In this study, we report that a recombinant lipoprotein consisting of inactive E7 (E7m) biologically linked to a bacterial lipid moiety (rlipo-E7m) induces the maturation of mouse bone marrow-derived dendritic cells through toll-like receptor 2 (TLR2), skews the immune responses toward the Th1 responses and induces E7-specific CTL responses. We further studied the ability of rlipo-E7m to provide protection against a TC-1 tumor cell challenge in an animal model. Mice prophylactically immunized with two 10-μg doses of rlipo-E7m were found to be free of TC-1 tumor growth. Experiments in a therapeutic immunization model showed that the tumor volume in mice receiving a single dose of rlipo-E7m was less than 0.01 cm(3) on day 40, whereas the tumor volume in mice treated with rE7m was 2.28±1.21 cm(3). The tumor volume of the entire control group was over 3 cm(3). In addition, we demonstrated that the CD8+ T cells play a major role in anti-tumor immunity when administration of rlipo-E7m. These results demonstrate that rlipo-E7m could be a promising candidate for treating HPV-associated tumors.  相似文献   

17.
BACKGROUND: The E7 oncoprotein of human papillomavirus type 16 (HPV16) is frequently used as a model tumor-associated antigen. Its immunogenicity has been substantially enhanced by fusion with several proteins of various origins and functions. Different mechanisms have been responsible for increased vaccination efficacy of fusion proteins. METHODS AND RESULTS: We linked E7 and its mutated form (E7GGG) with the mouse heat-shock protein 70.1 (HSP70.1). Enhanced immunogenicity of both fusion genes administered via a gene gun was demonstrated by protection of C57BL/6 mice against oncogenic MHC class I positive TC-1 cells producing the HPV16 E7 oncoprotein but not against the MHC class I negative TC-1/A9 subline. To assess if the efficacy of E7-based DNA vaccines could be increased by combination of various fusion genes, we combined the HSP70.1 fusion genes (i.e. E7HSP or E7GGGHSP) with the fusion construct linking E7GGG with targeting signals of lysosome-associated membrane protein 1 (Sig/E7GGG/LAMP-1). Treatment of mice 4 days after TC-1 cell inoculation showed moderately higher immunization potency of HSP70.1 fusion genes in comparison with the Sig/E7GGG/LAMP-1 gene. Any combination of two fusion genes given in the same gene gun shot neither was more effective compared with single genes nor protected mice against TC-1/A9 cells. As fusion of E7GGG with E. coli glucuronidase (E7GGG.GUS) had been previously proven to provide partial protection from TC-1/A9-induced tumors, we also combined E7GGGHSP with E7GGG.GUS. The genes were inoculated either in mix in two gene gun shots or separately each gene in one shot into opposite sides of the abdomen. Neither mode of combined immunization induced higher protection than E7GGG.GUS alone. However, doubling the DNA dose considerably enhanced the antitumor efficacy of E7GGG.GUS. CONCLUSIONS: We constructed highly immunogenic fusions of HPV16 E7 and E7GGG with mouse HSP70.1. Furthermore, we substantially enhanced protection against TC-1/A9 cells with downregulated MHC class I expression by doubling the pBSC/E7GGG.GUS dose, but we failed to demonstrate a beneficial effect of any combination of two fusion genes with different mechanisms causing enhancement of HPV16 E7 immunogenicity.  相似文献   

18.
The Bordetella adenylate cyclase toxoid (CyaA) targets cells expressing the αMβ2 integrin receptor CD11b/CD18 (CR3 or Mac-1) and can penetrate into cytosol of professional antigen-presenting cells, such as dendritic cells. This allows us to use CyaA for delivery of passenger antigens into the cytosolic pathway of processing and MHC class I-restricted presentation, which can promote induction of antigen-specific CD8+ cytotoxic T-lymphocyte immune responses. We show here that vaccination with a genetically detoxified CyaA336/E7 protein, carrying the full-length oncoprotein E7 of the human papilloma virus 16 inserted at position 336 of the cell-invasive AC domain of CyaA, induces an E7-specific CD8+ T-cell immune response and confers on mice protective, as well as therapeutic immunity against challenge with TC-1 tumor cells expressing the E7 oncoprotein. The therapeutic efficacy of priming with the CyaA336/E7 vaccine could further be enhanced by a heterologous booster immunization with a highly attenuated modified vaccinia virus Ankara (MVA) expressing the E7 protein fused to the lysosome-associated membrane protein (LAMP1). These results establish the potential of CyaA as a new antigen delivery tool for prime/boost immunotherapy of tumors. This paper won the poster prize at the conference “Progress in Vaccination against Cancer 4”, PIVAC 4, held in Freudenstadt-Lauterbad, Black Forest, Germany, from 22 to 25 September 2004. For further material on this conference, please see the series of Symposium Papers, published  相似文献   

19.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

20.
We have shown that DNA encoding the anti-apoptotic protein Bcl-xL enhances E7-specific CD8+ T-cell responses and DNA encoding pro-apoptotic protein caspase-3 suppresses E7-specific CD8+ T-cell responses when co-administered intradermally via gene gun with DNA encoding human papillomavirus type 16 (HPV-16) E7 linked to the sorting signal of the lysosome-associated membrane protein type 1 (LAMP-1). E7 and LAMP-1 are linked to form the chimeric Sig/E7/LAMP-1 (SEL). Because co-administration does not ensure delivery of both constructs to a single cell, we used pVITRO, a mammalian expression vector with double promoters, to ensure expression of both molecules in the same cell. We vaccinated C57BL/6 mice with pVITRO-SEL-Bcl-xL, pVITRO-SEL-mtBcl-xL, pVITRO-SEL, or pVITRO-SEL-caspase-3 intradermally via gene gun and intramuscularly via injection. We demonstrated that vaccination with pVITRO achieved similar results to a co-administration strategy: that Bcl-xL enhanced the E7-specific CTL response and caspase-3 suppressed the E7-specific CTL response. In addition, we found intradermal vaccination elicited significantly higher numbers of E7-specific CD8+ T cells compared to intramuscular vaccination. Thus, intradermal vaccination with a pVITRO vector combining an anti-apoptotic strategy (Bcl-xL) and an intracellular targeting strategy (SEL) further enhances the E7-specific CD8+ T-cell response and guarantees co-expression of both encoded molecules in transfected cells.T.W.K. and C.-F.H. contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号