首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we proposed that endogenous amphiphilic substances may partition from the aqueous cytoplasm into the lipid phase during dehydration of desiccation-tolerant organ(ism)s and vice versa during rehydration. Their perturbing presence in membranes could thus explain the transient leakage from imbibing organisms. To study the mechanism of this phenomenon, amphiphilic nitroxide spin probes were introduced into the pollen of a model organism, Typha latifolia, and their partitioning behavior during dehydration and rehydration was analyzed by electron paramagnetic resonance spectroscopy. In hydrated pollen the spin probes mainly occurred in the aqueous phase; during dehydration, however, the amphiphilic spin probes partitioned into the lipid phase and had disappeared from the aqueous phase below 0.4 g water g−1 dry weight. During rehydration the probes reappeared in the aqueous phase above 0.4 g water g−1 dry weight. The partitioning back into the cytoplasm coincided with the decrease of the initially high plasma membrane permeability. A charged polar spin probe was trapped in the cytoplasm during drying. Liposome experiments showed that partitioning of an amphiphilic spin probe into the bilayer during dehydration caused transient leakage during rehydration. This was also observed with endogenous amphipaths that were extracted from pollen, implying similar partitioning behavior. In view of the fluidizing effect on membranes and the antioxidant properties of many endogenous amphipaths, we suggest that partitioning with drying may be pivotal to desiccation tolerance, despite the risk of imbibitional leakage.  相似文献   

2.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

3.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

4.
Mechanisms of plant desiccation tolerance.   总被引:16,自引:0,他引:16  
Anhydrobiosis ("life without water") is the remarkable ability of certain organisms to survive almost total dehydration. It requires a coordinated series of events during dehydration that are associated with preventing oxidative damage and maintaining the native structure of macromolecules and membranes. The preferential hydration of macromolecules is essential when there is still bulk water present, but replacement by sugars becomes important upon further drying. Recent advances in our understanding of the mechanism of anhydrobiosis include the downregulation of metabolism, dehydration-induced partitioning of amphiphilic compounds into membranes and immobilization of the cytoplasm in a stable multicomponent glassy matrix.  相似文献   

5.
During cellular desiccation, reduction in volume can in principle cause amphiphilic compounds to partition from the cytoplasm into membranes, with structural perturbance as the result. Here, we studied the effect of partitioning of endogenous amphiphiles on membrane surface dynamics in desiccation-tolerant and -intolerant, higher and lower plant systems, using electron paramagnetic resonance (EPR) spin probe techniques. Labeling cells with the amphiphilic spin probe perdeuterated TEMPONE (PDT) enabled partitioning into the various phases to be followed. During drying, PDT molecules preferentially partitioned from the aqueous cytoplasm into the membrane surface and, at advanced stages of water loss, also into oil bodies. There was no specific partition behavior that could be correlated with lower/higher plants or with desiccation-tolerance. In vivo labeling with 5-doxylstearate (5-DS) enabled membrane surface fluidity to be characterized. In hydrated plants, the 5-DS spectra contained an immobile and a fluid component. The characteristics of the immobile component could not be specifically correlated with either lower or higher plants, or with desiccation tolerance. The relative contribution of the fluid component to the 5-DS spectra was higher in lower plants than in higher plants, but considerably decreased with drying in all desiccation-tolerant organisms. In contrast, the proportion of the fluid component in desiccation-sensitive wheat seedling root was higher than that in desiccation-tolerant wheat axis and considerably increased at the onset of water loss. We suggest that partitioning of amphipaths fluidize the membrane surface, but that in desiccation-tolerant systems the membranes are protected from excessive fluidization.  相似文献   

6.
This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumber (Cucumis sativa) seeds. Survival following drying and a membrane integrity assay indicated that desiccation tolerance was present during early imbibition and lost in germinated radicles. In germinated cucumber radicles, desiccation tolerance could be re-induced by an incubation in polyethylene glycol (PEG) before drying. In desiccation-intolerant radicles, partitioning of spin probes into lipids during dehydration occurred at higher water contents compared with tolerant and PEG-induced tolerant radicles. The difference in partitioning behavior between desiccation-tolerant and -intolerant tissues could not be explained by the loss of water. Consequently, using a two-phase model system composed of sunflower or cucumber oil and water, physical properties of the aqueous solvent that may affect the partitioning of amphiphilic spin probes were investigated. A significant relationship was found between the partitioning of spin probes and the viscosity of the aqueous solvent. Moreover, in desiccation-sensitive radicles, the rise in cellular microviscosity during drying commenced at higher water contents compared with tolerant or PEG-induced tolerant radicles, suggesting that the microviscosity of the cytoplasm may control the partitioning behavior in dehydrating seeds.  相似文献   

7.
S C Hartsel  D S Cafiso 《Biochemistry》1986,25(25):8214-8219
A new series of negatively charged, paramagnetic alkylsulfonate probes was synthesized and can be used to measure both the internal and the external surface potentials of model membrane systems. We tested for discreteness-of-charge effects in lipid membranes by comparing the surface potentials, estimated by use of these negatively charged amphiphiles, with that of a series of positively charged alkylammonium nitroxides in charged membranes. From the partitioning of these probes, the membrane surface potential was estimated in phosphatidylcholine membranes containing either phosphatidylserine or didodecyldimethylammonium bromide. The surface potentials, estimated with either positive or negative probes, were identical, within experimental error, in either positive or negative membranes, and they were well accounted for by a simple Gouy-Chapman-Stern theory. This symmetry, with respect to the sign of the charge, indicates that discreteness-of-charge effects are not significant in determining the potential-sensitive phase partitioning of these probes in model membranes. Thus, despite the fact that charge on membranes is discrete, models that assume a uniform density of charge in the plane of the membrane adequately account for the potentials measured by these amphiphilic probes.  相似文献   

8.
9.
The appearance of compartmentalization is recognized as a key step in biogenesis. The study of the dynamical behaviour of amphiphilic close membranes at equilibrium or under some external stress (osmotic pressure or dehydration process) can be useful in order to better elucidate the role of vesicles in the origin of life and to get insight into the molecular and membrane properties that bring to a spontaneous vesicle division. A Monte Carlo approach to simulate the evolution of close membranes under an external stress will be presented. This approach is mainly based on the accepted surface energy model introduced by Helfrich (1973) and Seifert (1997a). Some preliminary results will be also illustrated and possible developments and limits of this method discussed.  相似文献   

10.
Freezing, drying, and/or vitrification of membrane- solute-water systems.   总被引:7,自引:0,他引:7  
J Wolfe  G Bryant 《Cryobiology》1999,39(2):103-129
Membranes are often damaged by freezing and/or dehydration, and this damage may be reduced by solutes. In many cases, these phenomena can be explained by the physical behavior of membrane-solute-water systems. Both solutes and membranes reduce the freezing temperature of water, although their effects are not simply additive. The dehydration of membranes induces large mechanical stresses in the membranes. These stresses produce a range of physical deformations and changes in the phase behavior. These membrane stresses and strains are in general reduced by osmotic effects and possibly other effects of solutes-provided of course that the solutes can approach the membrane in question. Membrane stresses may also be affected by vitrification where this occurs between membranes. Many of the differences among the effects of different solutes can be explained by the differences in the crystallization, vitrification, volumetric, partitioning, and permeability properties of the solutes.  相似文献   

11.
脱水导致种子和花粉细胞膜变化的生物热力学研究进展   总被引:4,自引:2,他引:2  
膜系统是引起脱水敏感细胞的损伤和死亡的原初位点之一,该文综述了近年来对以下各问题以及它们之间的关系的研究进展:(1)膜相变;(2)膜系统和生物大分子受到的压力;(3)玻璃态的形成及其部位;(4)造成玻璃态形成的溶质分子的大小对膜相变的影响;(5)两性物质在细胞质水相和膜脂脂相间的再分配.旨在为如何有效地监控种子和花粉寿命和最大程度地减少种子和花粉细胞的衰老损伤,预测种质保存的最佳贮藏条件和种质寿命,以便及时更换保存样本等方面的研究提供新的思路.  相似文献   

12.
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes   总被引:2,自引:0,他引:2  
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (L(d)) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (L(o)) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

13.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (Ld) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (Lo) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

14.
Membrane resident proteins are a common feature of biology yet many of these proteins are not integral to the membrane. These peripheral membrane proteins are often bound to the membrane by the addition of fatty acyl chains to the protein. This modification, known as S-acylation or palmitoylation, promotes very strong membrane association but is also reversible allowing for a high degree of control over membrane association. Many S-acylated proteins are resident in sterol, sphingolipid and saturated-lipid enriched microdomains indicating an important role for S-acylation in protein partitioning within membranes. This review summarises the current knowledge of S-acylation in plants. S-acylated proteins play a wide variety of roles in plants and affect Ca2+ signalling, K+ movement, stress signalling, small and heterotrimeric G-protein membrane association and partitioning, tubulin function as well as pathogenesis. Although the study of S-acylation is in its infancy in plants this review illustrates that S-acylation is extremely important for plant function and that there are many unexplored aspects of S-acylation in plants. A full summary of the techniques and methods available to study S-acylation in plants is also presented.  相似文献   

15.
Verapamil and amlodipine are calcium ion influx inhibitors of wide clinical use. They are partially charged at neutral pH and exhibit amphiphilic properties. The noncharged species can easily cross the lipid membrane. We have measured with solid-state NMR the structural changes induced by verapamil upon incorporation into phospholipid bilayers and have compared them with earlier data on amlodipine and nimodipine. Verapamil and amlodipine produce a rotation of the phosphocholine headgroup away from the membrane surface and a disordering of the fatty acid chains. We have determined the thermodynamics of verapamil partitioning into neutral and negatively charged membranes with isothermal titration calorimetry. Verapamil undergoes a pK-shift of DeltapK(a) = 1.2 units in neutral lipid membranes and the percentage of the noncharged species increases from 5% to 45%. Verapamil partitioning is increased for negatively charged membranes and the binding isotherms are strongly affected by the salt concentration. The electrostatic screening can be explained with the Gouy-Chapman theory. Using a functional phosphate assay we have measured the affinity of verapamil, amlodipine, and nimodipine for P-glycoprotein, and have calculated the free energy of drug binding from the aqueous phase to the active center of P-glycoprotein in the lipid phase. By combining the latter results with the lipid partitioning data it was possible, for the first time, to determine the true affinity of the three drugs for the P-glycoprotein active center if the reaction takes place exclusively in the lipid matrix.  相似文献   

16.
Karin B. Schwab  U. Heber 《Planta》1984,161(1):37-45
The stress stability of membranes from two drought-tolerant plants (Craterostigma plantagineum andCeterach officinarum) was compared with that of a drought-sensitive plant (Spinacia oleracea) in model experiments. Thylakoids from these plants were exposed to excessive sugar or salt concentrations or to freezing. All stresses caused loss of membrane function as indicated by the loss of cyclic photophosphorylation or the inability of the membranes to maintain a large proton gradient in the light. However, loss of membrane functions caused by osmotic dehydration in the presence of sugars was reversible. Irreversible membrane damage during freezing or exposure to salt was attributed mainly to chaotropic solute effects. The sensitivity to different stresses was comparable in thylakoid membranes from tolerant and sensitive plants indicating that the stress tolerance of a plant can hardly be attributed to specific membrane structures which would increase membrane stability. Levels of membrane-compatible solutes such as sugars or amino acids, among them proline, were much higher in the drought-tolerant plants than in spinach. Isolated thylakoids suspended in solutions containing an excess of sugars remained functional after dehydration by freeze-drying. This indicates that membrane-compatible solutes are important in preventing membrane damage during dehydration of poikilohydric plants.Abbreviation BSA bovine serum albumin  相似文献   

17.
Lipids are the essential components of cell membranes and lipoproteins. Their peroxidation plays an important role in numerous pathologies in which oxidative stress is involved. Lipid peroxidation occurs through a chain reaction that contributes to membrane damage in cells. It results in the conversion of fatty acids to polar hydroperoxides and leads to the breakdown or malfunction of the membrane. Lipids are amphiphilic molecules that aggregate in aqueous solutions into micelles and liposomes. The effect of this structural organization is significant in studies of radiation-induced peroxidation damage in highly ordered biological systems such as biological membranes. In this paper, a synthesis of the data concerning radioinduced lipid peroxidation is completed by an original review of the different parameters that determine lipid oxidizability. In addition, the influence of lipid aggregation and the effect of molecular packing are discussed.  相似文献   

18.
The free energy cost ΔG of partitioning many unfolded peptides into membrane interfaces is unfavorable due to the cost of partitioning backbone peptide bonds. The partitioning cost is dramatically reduced if the peptide bonds participate in hydrogen bonds. The reduced cost underlies secondary structure formation by amphiphilic peptides partitioned into membrane interfaces through a process referred to as partitioning-folding coupling. This coupling is characterized by the free energy reduction per residue, ?G(res) that drives folding. There is some debate about the correct value of ?G(res) and its dependence on the hydrophobic moment (μ(H)) of amphiphilic α-helical peptides. We show how to compute ?G(res) correctly. Using published data for two families of peptides with different hydrophobic moments and charges, we find that ?G(res) does not depend upon μ(H). The best estimate of ?G(res) is -0.37 ± 0.02 kcal mol(-1). This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

19.
Plant membrane proteomics   总被引:11,自引:0,他引:11  
Plant membrane proteins are involved in many different functions according to their location in the cell. For instance, the chloroplast has two membrane systems, thylakoids and envelope, with specialized membrane proteins for photosynthesis and metabolite and ion transporters, respectively. Although recent advances in sample preparation and analytical techniques have been achieved for the study of membrane proteins, the characterization of these proteins, especially the hydrophobic ones, is still challenging. The present review highlights recent advances in methodologies for identification of plant membrane proteins from purified subcellular structures. The interest of combining several complementary extraction procedures to take into account specific features of membrane proteins is discussed in the light of recent proteomics data, notably for chloroplast envelope, mitochondrial membranes and plasma membrane from Arabidopsis. These examples also illustrate how, on one hand, proteomics can feed bioinformatics for a better definition of prediction tools and, on the other hand, although prediction tools are not 100% reliable, they can give valuable information for biological investigations. In particular, membrane proteomics brings new insights over plant membrane systems, on both the membrane compartment where proteins are working and their putative cellular function.  相似文献   

20.
Enterovirus 2B viroporin has been involved in membrane permeabilization processes occurring late during cell infection. Even though 2B lacks an obvious signal sequence for translocation, the presence of a Lys-based amphipathic domain suggests that this product bears the intrinsic capacity for partitioning into negatively charged cytofacial membrane surfaces. Pore formation by poliovirus 2B attached to a maltose-binding protein (MBP) has been indeed demonstrated in pure lipid vesicles, a fact supporting spontaneous insertion into and direct permeabilization of membranes. Here, biochemical evidence is presented indicating that both processes are modulated by phosphatidylinositol and phosphatidylserine, the main anionic phospholipids existing in membranes of target organelles. Insertion into lipid monolayers and partitioning into phospholipid bilayers were sustained by both phospholipids. However, MBP-2B inserted into phosphatidylserine bilayers did not promote membrane permeabilization and addition of this lipid inhibited the leakage observed in phosphatidylinositol vesicles. Mathematical modelling of pore formation in membranes containing increasing phosphatidylserine percentages was consistent with its inhibitory effect arising from a higher reversibility of MBP-2B surface aggregation. These results support that 2B insertion and pore-opening are mechanistically distinguishable events modulated by the target membrane anionic phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号