首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Purpose

Uncertainty is present in many forms in life cycle assessment (LCA). However, little attention has been paid to analyze the variability that methodological choices have on LCA outcomes. To address this variability, common practice is to conduct a sensitivity analysis, which is sometimes treated only at a qualitative level. Hence, the purpose of this paper was to evaluate the uncertainty and the sensitivity in the LCA of swine production due to two methodological choices: the allocation approach and the life cycle impact assessment (LCIA) method.

Methods

We used a comparative case study of swine production to address uncertainty due to methodological choices. First, scenario variation through a sensitivity analysis of the approaches used to address the multi-functionality problem was conducted for the main processes of the system product, followed by an impact assessment using five LCIA methods at the midpoint level. The results from the sensitivity analysis were used to generate 10,000 independent simulations using the Monte Carlo method and then compared using comparison indicators in histogram graphics.

Results and discussion

Regardless of the differences between the absolute values of the LCA obtained due to the allocation approach and LCIA methods used, the overall ranking of scenarios did not change. The use of the substitution method to address the multi-functional processes in swine production showed the highest values for almost all of the impact categories, except for freshwater ecotoxicity; therefore, this method introduced the greater variations into our analysis. Regarding the variation of the LCIA method, for acidification, eutrophication, and freshwater ecotoxicity, the results were very sensitive. The uncertainty analysis with the Monte Carlo simulations showed a wide range of results and an almost equal probability of all the scenarios be the preferable option to decrease the impacts on acidification, eutrophication, and freshwater ecotoxicity. Considering the aggregate result variation across allocation approaches and LCIA methods, the uncertainty is too high to identify a statistically significant alternative.

Conclusions

The uncertainty analysis showed that performing only a sensitivity analysis could mislead the decision-maker with respect to LCA results; our analysis with the Monte Carlo simulation indicates no significant difference between the alternatives compared. Although the uncertainty in the LCA outcomes could not be decreased due to the wide range of possible results, to some extent, the uncertainty analysis can lead to a less uncertain decision-making by demonstrating the uncertainties between the compared alternatives.
  相似文献   

2.

Purpose

A novel approach was used for quantifying uncertainty propagation in life cycle assessment (LCA). The approach was designed to be efficient and applicable in practice. The model was applied to a specific case study concerning alternative strategies for managing bio-waste: incineration versus anaerobic digestion followed by composting.

Methods

The uncertainty of each impact category was calculated starting from the variance (σ2) and geometric mean (μ) of the lognormal distribution of each input data. A procedure consisting of three mandatory steps and one facultative step was developed. Mandatory steps were calculation of the associated normal distribution for each input, calculation of the percentile curve for each input, and calculation of the percentile curve of the impact categories. The facultative step consisted in calculating the lognormal distribution of the impact categories if all the values of the percentile curve were >0.

Results and discussion

The uncertainty associated with the results of the anaerobic digestion and composting scenario was significantly higher than those associated with the incineration scenario. These results were confirmed by those obtained by Monte Carlo simulations. Environmental gains calculated for the scenario with incineration concerning acidification, global warming, terrestrial eutrophication, and photochemical ozone creation had a high level of probability (i.e., >90 %). On the contrary, the impact categories of the scenario with anaerobic digestion and composting had higher uncertainties.

Conclusions

The source of uncertainty in LCA analysis can be due to multiple factors. Among these, the variability of the values of the LCI can have a significant influence on the results of the study. LCA analysis based on the exploitation of geometric means and/or average values of inputs reported in LCI can lead to results affected by a low level of reliability. In particular, this aspect can play a relevant role for LCA-based decisions when different scenarios and options are compared. As in the case study reported in this work, neglecting the propagation of uncertainty can result in a relevant bias for obtaining a full informative impression of the problem analyzed.
  相似文献   

3.

Purpose

Many applications of life cycle assessment do not consider the variability of the service lifetime of different structures, and this may be a relevant factor in an environmental impact assessment. This paper aims to determine the influence of the service lifetime on the potential environmental impacts of wooden and concrete poles in the electricity distribution system.

Methods

The estimation of service lifetime was conducted using the factorial method. The life cycle assessment was applied using SimaPro software and considered the entire life cycle of utility poles, from the extraction of raw materials to the final disposal. Then, an evaluation of the environmental impacts using the CML IA baseline method was performed. The study included the analysis of uncertainty using the Monte Carlo method.

Results and discussion

In general, the wooden poles had a lower potential environmental impact compared to the concrete poles. The result of the sensitivity analysis considering the variability of the chromated copper arsenate wood preservative retention rate suggests that the frequency of maintenance affects the service lifetime. Often, the comparison of products in the LCA perspective is carried out by considering similar useful lifetime services for the different alternatives, and this study shows that the environmental performance of products or services is directly proportional to the lifetime. It is a crucial parameter that has to be clarified in order to reduce uncertainty in the results.

Conclusions

Thus, some factors such as material quality, design adjustments and routine maintenance extend the service lifetime of a product or process and are shown to be effective ways to reduce environmental impacts. Therefore, the service lifetime has a significant influence on the development of the life cycle assessment. Comparative LCA studies are often sensitive to parameters that may even change the ranking of selected impact categories. All in all, from the sensitivity analysis highlighted in this study, the variability of lifetime service has proven to be one of the most prominent factors influencing comparative LCA results.
  相似文献   

4.

Introduction

New platforms are emerging that enable more data providers to publish life cycle inventory data.

Background

Providing datasets that are not complete LCA models results in fragments that are difficult for practitioners to integrate and use for LCA modeling. Additionally, when proxies are used to provide a technosphere input to a process that was not originally intended by the process authors, in most LCA software, this requires modifying the original process.

Results

The use of a bridge process, which is a process created to link two existing processes, is proposed as a solution.

Discussion

Benefits to bridge processes include increasing model transparency, facilitating dataset sharing and integration without compromising original dataset integrity and independence, providing a structure with which to make the data quality associated with process linkages explicit, and increasing model flexibility in the case that multiple bridges are provided. A drawback is that they add additional processes to existing LCA models which will increase their size.

Conclusions

Bridge processes can be an enabler in allowing users to integrate new datasets without modifying them to link to background databases or other processes they have available. They may not be the ideal long-term solution but provide a solution that works within the existing LCA data model.
  相似文献   

5.

Purpose

Some LCA software tools use precalculated aggregated datasets because they make LCA calculations much quicker. However, these datasets pose problems for uncertainty analysis. Even when aggregated dataset parameters are expressed as probability distributions, each dataset is sampled independently. This paper explores why independent sampling is incorrect and proposes two techniques to account for dependence in uncertainty analysis. The first is based on an analytical approach, while the other uses precalculated results sampled dependently.

Methods

The algorithm for generating arrays of dependently presampled aggregated inventories and their LCA scores is described. These arrays are used to calculate the correlation across all pairs of aggregated datasets in two ecoinvent LCI databases (2.2, 3.3 cutoff). The arrays are also used in the dependently presampled approach. The uncertainty of LCA results is calculated under different assumptions and using four different techniques and compared for two case studies: a simple water bottle LCA and an LCA of burger recipes.

Results and discussion

The meta-analysis of two LCI databases shows that there is no single correct approximation of correlation between aggregated datasets. The case studies show that the uncertainty of single-product LCA using aggregated datasets is usually underestimated when the correlation across datasets is ignored and that the magnitude of the underestimation is dependent on the system being analysed and the LCIA method chosen. Comparative LCA results show that independent sampling of aggregated datasets drastically overestimates the uncertainty of comparative metrics. The approach based on dependently presampled results yields results functionally identical to those obtained by Monte Carlo analysis using unit process datasets with a negligible computation time.

Conclusions

Independent sampling should not be used for comparative LCA. Moreover, the use of a one-size-fits-all correction factor to correct the calculated variability under independent sampling, as proposed elsewhere, is generally inadequate. The proposed approximate analytical approach is useful to estimate the importance of the covariance of aggregated datasets but not for comparative LCA. The approach based on dependently presampled results provides quick and correct results and has been implemented in EcodEX, a streamlined LCA software used by Nestlé. Dependently presampled results can be used for streamlined LCA software tools. Both presampling and analytical solutions require a preliminary one-time calculation of dependent samples for all aggregated datasets, which could be centrally done by database providers. The dependent presampling approach can be applied to other aspects of the LCA calculation chain.
  相似文献   

6.

Purpose

Knowledge regarding environmental impacts of agricultural systems is required. Consideration of uncertainty in life cycle assessment (LCA) provides additional scientific information for decision making. The aims of this study were to compare the environmental impacts of different growing cherry tomato cultivation scenarios under Mediterranean conditions and to assess the uncertainty associated to the different agricultural production scenarios.

Materials and methods

The burdens associated to cherry tomato production were calculated and evaluated by the LCA methodology. The functional unit (FU) chosen for this study was the mass unit of 1 t of commercial loose cherry tomatoes. This study included the quantitative uncertainty analysis through Monte Carlo simulation. Three scenarios were considered: greenhouse (GH), screenhouse (SH), and open field (OF). The flows and processes of the product scenario were structured in several sections: structure, auxiliary equipment, fertilizers, crop management, pesticides, and waste management. Six midpoint impact categories were selected for their relevance: climate change, terrestrial acidification, marine eutrophication, metal depletion, and fossil depletion using the impact evaluation method Recipe Midpoint and ecotoxicity using USEtox.

Results and discussion

The structure, auxiliary equipment, and fertilizers produced the largest environmental impacts in cherry tomato production. The greatest impact in these stages was found in the manufacture and drawing of the steel structures, manufacture of perlite, the amount of HDPE plastics used, and the electricity consumed by the irrigation system and the manufacture and application of fertilizers. GH was the cropping scenario with the largest environmental impact in most categories (varying from 18 and 37% higher than SH and OF, respectively, in metal depletion, to 96% higher than SH and OF, in eutrophication). OF showed the highest uncertainty in ecotoxicity, with a bandwidth of 60 CTUe and a probability of 100 and 99.4% to be higher than GH and SH, respectively.

Conclusions

The LCA was used to improve the identification and evaluation of the environmental burdens for cherry tomato production in the Mediterranean area. This study demonstrates the significance of conducting uncertainty analyses for comparative LCAs used in comparative relative product environmental impacts.
  相似文献   

7.

Purpose

One of the main trends in life cycle assessment (LCA) today is towards increased regionalization in inventories and impact assessment methods. LCA studies require the collection of activity data but also of increasingly region-specific background data to accurately depict supply chain processes and enable the application of an increasing number of geographically explicit impact assessment models. This is particularly important for agri-food products. In this review, we assess progress in Portugal towards this goal and provide recommendations for future developments.

Methods

We perform a comprehensive review of available LCA studies conducted for Portuguese agri-food products, in order to evaluate the current state of Portuguese agri-food LCA. Among other issues, we assess availability of data, methods used, level of regionalization, impact assessment model relevance and coherence for inter-product comparability. We also provide conclusions and recommendations based on recent developments in the field.

Results and discussion

We found 22 LCA studies, covering 22 different products. The analysis of these studies reveals limitations in inter-study comparability. The main challenges have to do with a lack of country-specific foreground data sources applied consistently in the studies found, with discrepancies in impact assessment categories, and with the use of simple functional units that may misrepresent the product analyzed.

Conclusions

We conclude that Portuguese agri-food LCA studies do not have a systematic and country-scale approach in order to guarantee regional accuracy and comparability. We propose a research strategy to engage the Portuguese agri-food LCA community in devising a consistent framework before practical application studies are conducted.
  相似文献   

8.

Purpose

This paper introduces the new EcoSpold data format for life cycle inventory (LCI).

Methods

A short historical retrospect on data formats in the life cycle assessment (LCA) field is given. The guiding principles for the revision and implementation are explained. Some technical basics of the data format are described, and changes to the previous data format are explained.

Results

The EcoSpold 2 data format caters for new requirements that have arisen in the LCA field in recent years.

Conclusions

The new data format is the basis for the Ecoinvent v3 database, but since it is an open data format, it is expected to be adopted by other LCI databases. Several new concepts used in the new EcoSpold 2 data format open the way for new possibilities for the LCA practitioners and to expand the application of the datasets in other fields beyond LCA (e.g., Material Flow Analysis, Energy Balancing).
  相似文献   

9.

Purpose

Regionalization in life cycle assessment (LCA) has focused on spatially differentiated environmental variables for regional impact assessment models. Relatively less attention has been paid to spatial disparities in intermediate flows for life cycle inventory (LCI).

Methods

First, we compiled state-specific LCIs for four major crops in the USA and evaluated their geographic variability in the characterized results due to the differences in intermediate inputs. Second, we evaluated the consequence of choosing average or region-specific LCIs in understanding the life cycle environmental implications of land use change from cotton to corn or soybean. Finally, we analyzed the implications of our findings in characterizing the uncertainties associated with geographic variability under the conventional pedigree approach.

Results and discussion

Our results show that spatial disparities in LCI alone lead to two to fourfold differences in characterized results for most impact categories. The differences, however, increase to over an order of magnitude for freshwater ecotoxicity and human health non-cancer. Among the crops analyzed, winter wheat shows higher variability partly due to a larger difference in yield. As a result, the use of national average data derived from top corn and soybean producing states significantly underestimates the characterized impacts of corn and soybean in the states where land conversion from cotton to corn or soybean actually took place. The results also show that the conventional pedigree approach to uncertainty characterization in LCA substantially underestimates uncertainties arising from geographic variability of agriculture. Compared to the highest geometric standard deviation (GSD) value of 1.11 under the pedigree approach, the GSDs that we derived are as high as 7.1, with the median around 1.9.

Conclusions

The results highlight the importance of building regional life cycle inventory for understanding the environmental impacts of crops at the regional level. The high geographic variability of crops also indicates the need for sector-specific approaches to uncertainty characterization. Our results also suggest that the uncertainty values in the existing LCI databases might have been signficantly underestimated especially for those products with high geographic variability, demanding a cautious interpretation of the results derived from them. 
  相似文献   

10.

Purpose

Seafood life cycle assessment (LCA) studies have adopted the primary production required (PPR) indicator to account for the impact of these production systems (e.g., capture fisheries or aquaculture) on the ecosystems they harvest wild inputs from. However, there exists a large diversity in the application of methods to calculate PPR, and current practice often does not consider species- and ecosystem-specific factors. Here, we critically examine current practice and propose a refined method for applying the PPR metric in seafood LCAs.

Methods

We surveyed seafood LCAs that quantify PPR, or its derivatives, to examine the diversity of practice. We then defined and applied a refined method to a case study of the average Norwegian salmon feed in 2012. This refined method incorporates species-specific fishmeal and oil yields, source ecosystem-specific transfer efficiencies and expresses results as a percentage of total ecosystem production that PPR represents. Results were compared to those using previously applied methods based on the literature review, and the impact of uncertainty and natural variability of key input parameters was also assessed using Monte Carlo simulation.

Results and discussion

From the literature review, most studies do not incorporate species-specific fishmeal and oil yields or ecosystem-specific transfer efficiencies when calculating PPR. Our proposed method, which incorporated source species- and ecosystem-specific values for these parameters, provides far greater resolution of PPR than when employing global average values. When alternative methods to calculate PPR were applied to marine inputs to Norwegian salmon feeds, resulting PPR values were similar for some sources of fishmeal and oil. For other species, such as Atlantic herring from ecosystems with low transfer efficiencies, there was a large divergence in resulting PPR values. For combined inputs to Norwegian salmon feeds in 2012, the refined method resulted in a total PPR value that is three times higher than would result using the currently standard method signaling that previous LCA research may have substantially underestimated the marine biotic impacts of fishery products.

Conclusions

While there exists a great diversity of practice in the application of the PPR indicator in seafood LCA, the refined method should be adopted for future LCA studies to be more specific to the context of the study.
  相似文献   

11.

Purpose

Life cycle assessment (LCA) software packages have proliferated and evolved as LCA has developed and grown. There are now a multitude of LCA software packages that must be critically evaluated by users. Prior to conducting a comparative LCA study on different concrete materials, it is necessary to examine a variety of software packages for this specific purpose. The paper evaluates five LCA tools in the context of the LCA of seven concrete mix designs (conventional concrete, concrete with fly ash, slag, silica fume or limestone as cement replacement, recycled aggregate concrete, and photocatalytic concrete).

Methods

Three key evaluation criteria required to assess the quality of analysis are adequate flexibility, sophistication and complexity of analysis, and usefulness of outputs. The quality of life cycle inventory (LCI) data included in each software package is also assessed for its reliability, completeness, and correlation to the scope of LCA of concrete products in Canada. A questionnaire is developed for evaluating LCA software packages and is applied to five LCA tools.

Results and discussion

The result is the selection of a software package for the specific context of LCA of concrete materials in Canada, which will be used to complete a full LCA study. The software package with the highest score is software package C (SP-C), with 44 out of a possible 48 points. Its main advantage is that it allows for the user to have a high level of control over the system being modeled and the calculation methods used.

Conclusions

This comparative study highlights the importance of selecting a software package that is appropriate for a specific research project. The ability to accurately model the chosen functional unit and system boundary is an important selection criterion. This study demonstrates a method to enable a critical and rigorous comparison without excessive and redundant duplication of efforts.
  相似文献   

12.
13.

Purpose

This paper aims to verify whether life cycle assessment (LCA) research can be mainly treated as a kind of pro-environmental behavior due to public environment concerns, or academic and research activities based on scientific traditions.

Methods

This paper uses the international comparisons method for modeling and SPSS 16.0 for data processing. The data in this study were obtained from the Human Development Report by the United Nations Development Programme and the Web of Science by the Institute for Scientific Information.

Results and discussion

Our empirical study shows that the two main factors influencing the outputs per capita of the research articles in LCA in a particular country are the value of Environmental Performance Index, which represents the overall environmental quality, as well as the outputs per capita of the research articles in environmental science and technology. The results of statistical analysis show two J-type curves: with the change of the independent variables, the dependent variable changes in the same direction, but at a rate that is first slow, then fast.

Conclusions

LCA research results from scientific traditions and can only develop based on fundamental research in environmental science and technology. Further, LCA research is a pro-environmental behavior due to actual and objective effects rather than subjective motives as more research on LCA can accompany, even in some degree may lead to better overall environmental qualities. However, although environmental concerns are likely to affect the number of LCA studies as an implicit variable, this has not been empirically confirmed in our optimization model.
  相似文献   

14.

Purpose

Practitioners of life cycle assessment (LCA) acknowledge that more input from social scientists can help advance the cause of life cycle management (LCM). This commentary offers a social science perspective on a long-running question within LCA, namely, how the field should manage not only stakeholders’ values but also those of practitioners themselves.

Methods

More than 60 interviews were conducted with LCA practitioners and their industry clients. Qualitative data were also collected through participant observation at several LCA and LCM conferences, a study of the field’s history, and extensive content and discourse analysis of LCA publications and online forums.

Results and discussion

Results show that LCA practitioners’ values are informed partly by the knowledge acquired through their LCA work. At the same time, LCA standards and professional norms implicitly advise practitioners to keep those values out of their work as much as possible, so as not to compromise its apparent objectivity. By contrast, many social scientists contend openly that value-based judgments, based on “situated knowledge,” can actually enhance the rigor, accountability, and credibility of scientific assessments.

Conclusions

LCA practitioners’ own situated knowledge justifies not only the value choices required by LCA but also their evaluative judgments of contemporary life cycle-based sustainability initiatives. This more critical voice could advance the goals of LCM while also boosting the credibility of LCA more generally.
  相似文献   

15.

Purpose

The purpose of the study was to perform a comparative life cycle assessment of current and future electricity generation systems in the Czech Republic and Poland. The paper also outlines the main sources of environmental impact for the different impact categories for the electricity generation technologies analyzed. The analyses covered the years 2000–2050, and were conducted within the framework of the international programme Interreg V-A Czech Republic-Poland, Microprojects Fund 2014–2020 in the Euroregion Silesia.

Methods

Environmental assessment was done using the life cycle assessment (LCA) and ReCiPe Midpoint and Endpoint methods, which allowed the presentation of different categories of environmental impact and damage. The LCA was based on ISO 14040 and ISO 14044, using SimaPro 8.2.3 software with the Ecoinvent 3.2 database. The analyses cover both the current electricity production structures in the Czech Republic and Poland, and the projected energy production.

Results and discussion

The LCA analyses performed for the energy systems under consideration in the Czech Republic and Poland enabled a comparative analysis of current and forecast energy systems in these countries, as well as identification of the main sources of environmental impact. Comparative analysis of the LCA results showed that current and future electricity generation systems in Poland caused higher environmental impact there, than in the Czech Republic.

Conclusions

The assessment of the life cycle of electricity sources showed that the main determinant of the negative impact on the environment of energy systems in both Poland and the Czech Republic was the consumption of solid fuels, and in particular, the consumption of lignite. It is important to highlight that this is the first attempt of a comparative LCA of electricity production in the Czech Republic and Poland. This is also the first approach that contains analyses of the life cycle assessment of both present and future energy systems. The economic assessment and eco-efficiency of current and future electricity generation systems in European Union countries will be addressed in future research.
  相似文献   

16.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

17.

Purpose

Integrated multi-trophic aquaculture (IMTA), growing different species in the same space, is a technology that may help manage the environmental impacts of coastal aquaculture. Nutrient discharges to seawater from monoculture aquaculture are conceptually minimized in IMTA, while expanding the farm economic base. In this study, we investigate the environmental trade-offs for a small-to-medium enterprise (SME) considering a shift from monoculture towards IMTA production of marine fish.

Methods

A comparative life cycle assessment (LCA), including uncertainty analysis, was implemented for an aquaculture SME in Italy. Quantification and simultaneous propagation of uncertainty of inventory data and uncertainty due to the choice of allocation method were combined with dependent sampling to account for relative uncertainties and statistical testing and interpretation to understand the uncertainty analysis results. Monte Carlo simulations were used as a propagation method. The environmental impacts per kilo of fish produced in monoculture and in IMTA were compared. Twelve impact categories were considered. The comparison is first made excluding uncertainty (deterministic LCA) and then accounting for uncertainties.

Results and discussion

Deterministic LCA results evidence marginal differences between the impacts of IMTA and monoculture fish production. IMTA performs better on all impacts studied. However, statistical testing and interpretation of the uncertainty analysis results showed that only mean impacts for climate change are significantly different for both productive systems, favoring IMTA. For the case study, technical variables such as scales of production of the species from different trophic levels, their integration (space and time), and the choice of species determine the trade-offs. Also, LCA methodological choices such as that for an allocation method and the treatment of relative uncertainties were determinant in the comparison of environmental trade-offs.

Conclusions

The case study showed that environmental trade-offs between monoculture and IMTA fish production depend on technical variables and methodological choices. The combination of statistical methods to quantify, propagate, and interpret uncertainty was successfully tested. This approach supports more robust environmental trade-off assessments between alternatives in LCAs with uncertainty analysis by adding information on the significance of results. It was difficult to establish whether IMTA does bring benefits given the scales of production in the case study. We recommend that the methodology defined here is applied to fully industrialized IMTA systems or bay-scale environments, to provide more robust conclusions about the environmental benefits of this aquaculture type in Europe.
  相似文献   

18.

Purpose

When assessing agricultural products using life cycle assessment (LCA), the farmers play a key role as they have first-hand information to understanding the activities involved in the assessed systems. However, the compilation of these data can be tiresome and complicated. To engage farmers in the LCA, a web tool (eFoodPrint Env®) was designed to facilitate their tasks as much as possible, seeking the trade-off between comprehensiveness and time consumption without affecting the quality.

Methods

The model relies on primary data for the specific parcel and growing season; it starts with the ancillary materials extraction and ends with the transport of products to the corresponding cooperative. The model excludes the infrastructure except in the cases of protected crops including greenhouses. To build the inventory, the web tool guides the user through a questionnaire divided in cultivation, machinery, fertilization, plant treatment, and transport. Carbon footprint is computed with global warming potentials of the International Panel of Climate Change following the norm PAS2050. The calculations behind the web tool have the following modules: (1) farming input and output flows; (2) database and default data; (3) greenhouse infrastructure; (4) impact assessment; (5) uncertainty analysis, and (6) results module.

Results and discussion

The web tool is already in use and can be applied to most of agricultural facilities. Examples of estates of corn, nectarine, grape, and tomato are herein showed. The application displays the results distributed in the different stages considered in each product system, and the scores include error bars derived from the uncertainty analysis. Corn production showed the highest carbon footprint per kilogram of product, with a high contribution due to fertilizer production and application. The carbon footprint of tomato production in low-tunnel greenhouse showed nearly 30 % of impact related only to the greenhouse structure. Regarding uncertainty, the worst value is also associated to the corn production for which the most uncertain activities have more influence (fertilizer and transport).

Conclusions

The design of the tool has the objective of meeting the requirements of data quality and comprehensiveness with the reality of the farms. The tool is generic enough to be applied to different cropping systems, enabling the generation of simple reports with the results of the analysis. The modular structures of both data entry and model calculation allow the identification of potential sources of uncertainty and hotspots within the studied life cycle stages.
  相似文献   

19.

Purpose

A new biodegradable film, based on orange peel-derived pectin jelly and corn starch developed in our labs, was environmentally compared with a low-density polyethylene (LDPE) film. An environmental assessment was realized in two stages to individually determine the environmental impact resulting from production-shaping processes and the biodegradation performance of the films.

Methods

Firstly, a prospective cradle-to-gate life cycle assessment (LCA) was performed using a CML-IA method implemented in SimaPro 8.0.1. Secondly, an aerobic biodegradation was simulated as directly disposing of the films in soil according to ASTM D 5988–03. The functional unit considered in this study was 1 m2 of packaging film. The films were compared for impact categories of abiotic depletion (elements and fossil fuel), global warming potential, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication. A Monte Carlo simulation was realized to determine the uncertainty levels. According to impact assessment results and major sources of uncertainties, two predictive improvement scenarios were performed for commercial scale production and compared with biocomposite film at the laboratory scale.

Results and discussion

LCA results show that biocomposite film has a slightly higher impact than LDPE film for all categories with probabilities ranging between 50 and 100 % except for acidification. The categories that have uncertainty (terrestrial ecotoxicity, abiotic depletion (element), photochemical oxidation, human toxicity, and fresh water aquatic ecotoxicity) were mainly resulted from electricity consumption for extrusion and film forming and modified starch addition. These two processes are mainly responsible for the environmental impact of the biocomposite film.

Conclusions

Prospective LCA showed that improvement of the process in this manner would decrease the environmental impact. On the other hand, the maximum level of biodegradation achieved in the biocomposite film is 78.4 %, whereas that for the LDPE film is 40.4 % with CO2 production rates of 1.97 and 1.17 mmol CO2/day, respectively.
  相似文献   

20.

Background

In the years 2000 and 2002, the German Environment Agency in Berlin (UBA) published the results of a comprehensive LCA study on beverage containers comprising aluminium cans with volumes of 330 ml and 500 ml. Starting with the aluminium can scenarios and the respective results obtained during the UBA study, additional analyses were performed by IFEU in 2003, a German consultant having been a member of the project team working on the UBA study. The objective was to examine the influence of selected parameters on the LCA profile of carbonated soft drink containers. Data and method were in complete analogy with the LCI and LCA part of the UBA study.

Materials

In 2006, the aluminium industry commissioned a study on further influential factors that help determine the sale of certain types of beer, studying the effects of two selected parameter settings on the comparative results of the aluminium can against the refillable glass bottle. In this scenario, special attention was given to two influential factors, the distribution distance—distinguished by regional and nationwide distribution—and trippage rate.

Results and discussion

The results of the initial LCA from the years 2000 and 2002 showed, for the examined parameters container weight, rate of post-consumer recovery of used containers, degree of recycled content and quality of the recycling routes, that each had a considerable influence on the environmental impact profile of the aluminium can within the given framework. Can weight and recycling rate were sensitive factors in the impact categories of climate change, fossil resources, summer smog (POCP), acidification and terrestrial eutrophication. Can volume affected virtually all impact categories examined.

Conclusions

By now, individual improvement options have already been put into practice in Germany. The environmental profile of the average 330 ml aluminium can on the German market can be expected to be ahead of that of the aluminium can at the time of the UBA study. The introduction of a 500-ml can on the market denotes a fundamental step forward in improving LCA results of the aluminium can as a container for beverages.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号