首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli mutants, unable to grown on 4-hydroxyphenylacetate, have been isolated and found to be defective in the NAD-dependent succinate semialdehyde dehydrogenase. When the mutants are grown with 4-aminobutyrate as sole nitrogen source an NAD-dependent succinate semialdehyde dehydrogenase seen in the parental strain is absent but, as in the parental strain, an NADP-dependent enzyme is induced. Growth of the mutants is inhibited by 4-hydroxyphenylacetate due to the accumulation of succinate semialdehyde. The mutants are more sensitive to inhibition by exogenous succinate semialdehyde than is the parental strain. Secondary mutants able to grow in the presence of 4-hydroxyphenylacetate but still unable to use it as sole carbon source were defective in early steps of 4-hydroxyphenylacetate catabolism and so did not form succinate semialdehyde from 4-hydroxyphenylacetate. The gene encoding the NAD-dependent succinate semialdehyde dehydrogenase of Escherichia coli K-12 was located at min 34.1 on the genetic map.  相似文献   

2.
Abstract Klebsiella pneumoniae M5a1 grows readily on two compounds, 4-hydroxyphenylacetate and 4-aminobutyrate, whose catabolism produces succinic semialdehyde. A single succinic semialdehyde dehydrogenase was detected, native molecular weight 52000, that has NAD as the preferred cofactor and is induced by succinic semialdehyde functions in the oxidation of succinic semialdehyde during growth on both 4-hydroxyphenyl-acetate and 4-aminobutyrate. This contrasts with the situation for Escherichia coli and Pseudomonas putida where two distinct forms of succinic semialdehyde dehydrogenase have been observed.  相似文献   

3.
5-Carboxymethyl-2-hydroxymuconic semialdehyde (CHMS) dehydrogenase from Escherichia coli C and Klebsiella pneumoniae M5a1 have been purified and some of their properties studied. The apparent Km values for NAD and CHMS were 11.7 +/- 1.5 microM and 5.2 +/- 1.9 microM, respectively, for the K. pneumoniae enzyme, and 19.5 +/- 2.7 microM and 9.2 +/- 1.4 microM, respectively, for the E. coli enzyme. Both enzymes were optimally active at pH 7.5 in sodium phosphate buffer. They had subunit molecular weights of 52,000 (+/- 1000) and the native enzymes appeared to be dimers of identical subunits. The first 20 residues of their N-terminal amino acid sequences were 90% homologous. A degenerate oligonucleotide probe constructed to a six amino acid sequence common to both enzymes gave strong hybridization with DNA from E. coli strains B and W as well as with E. coli C and K. pneumoniae but little or no hybridization to DNA from E. coli K12 or Pseudomonas putida.  相似文献   

4.
5.
A succinate semialdehyde dehydrogenase gene (gabD) was identified to be disrupted in a transposon-induced mutant of Ralstonia eutropha exhibiting the phenotype 4-hydroxybutyric acid-leaky. The native gabD gene was cloned by colony hybridization using a homologous gabD-specific DNA probe. DNA sequencing revealed an 1452-bp open reading frame, and the deduced amino acid sequence showed strong similarities to NADP(+)-dependent succinate semialdehyde dehydrogenases from Escherichia coli, Rhizobium sp., Homo sapiens and Rattus norvegicus. The gabD gene was heterologously expressed in a recombinant E. coli strain harboring plasmid pSK::EE6.8. Similar to the molecular organization of the gab cluster in E. coli, additional genes encoding enzymes for the degradation of gamma-aminobutyrate are closely related to gabD in R. eutropha. Enzymatic studies indicated the existence of a second NAD(+)-dependent succinate semialdehyde dehydrogenase in R. eutropha.  相似文献   

6.
A multicopy plasmid that contains the tyrosine operon has been used to transform strains of Escherichia coli K-12. The resultant strains yielded levels of chorismate mutase-prephenate dehydrogenase that were up to 5000-fold higher than that given by the parent strain and about 6-fold higher than that given by a tyrR strain. The production of enzyme fell when tetracycline was omitted from the growth medium because of the loss of the plasmid. The bifunctional enzyme was isolated in good yield by a simple purification procedure and shown to possess properties identical to those exhibited by the enzyme from a tyrR strain.  相似文献   

7.
To analyze whether Escherichia coli strains that cause urinary tract infections (UPEC) share virulence characteristics with the diarrheagenic E. coli (DEC) pathotypes and to recognize their genetic diversity, 225 UPEC strains were examined for the presence of various properties of DEC and UPEC (type of interaction with HeLa cells, serogroups and presence of 30 virulence genes). No correlation between adherence patterns and serogroups was observed. Forty-five serogroups were found, but 64% of the strains belonged to one of the 12 serogroups (O1, O2, O4, O6, O7, O14, O15, O18, O21, O25, O75, and O175) and carried UPEC virulence genes (pap, hly, aer, sfa, cnf). The DEC genes found were: aap, aatA, aggC, agg3C, aggR, astA, eae, ehly, iha, irp2, lpfA(O113), pet, pic, pilS, and shf. Sixteen strains presented aggregative adherence and/or the aatA sequence, which are characteristics of enteroaggregative E. coli (EAEC), one of the DEC pathotypes. In summary, certain UPEC strains may carry DEC virulence properties, mostly associated to the EAEC pathotype. This finding raises the possibility that at least some faecal EAEC strains might represent potential uropathogens. Alternatively, certain UPEC strains may have acquired EAEC properties, becoming a potential cause of diarrhoea.  相似文献   

8.
Homofermentative production of reduced products requires additional reducing power output (NADH) from glucose catabolism. Anaerobic expression of the pyruvate dehydrogenase complex (PDH, encoded by aceEF‐lpd, a normal aerobic operon) is able to provide the additional NADH required for production of reduced products in Escherichia coli fermentation. The multiple promoters (pflBp(1–7)) of pyruvate formate lyase (pflB) were evaluated for anaerobic expression of the aceEF‐lpd operon. Four chromosomal constructs, pflBp(1–7)‐aceEF‐lpd, pflBp(1–6)‐aceEF‐lpd, pflBp(6,7)‐aceEF‐lpd, and pflBp6‐aceEF‐lpd efficiently expressed the PDH complex in anaerobically grown cells. Doubling the reducing power output was achieved when glucose was oxidized to acetyl‐CoA through glycolysis and pyruvate oxidation by the anaerobically expressed PDH complex (glucose →2 acetyl‐CoA + 4 NADH). This additional reducing power output can be used for production of reduced products in anaerobic E. coli fermentation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
Succinic semialdehyde dehydrogenase (EC 1.2.1.16) was purified 74-fold from wheat grain (Triticum durum Desf.). The enzyme appears quite specific for succinic semialdehyde (SSA). Both NAD and NADP support the oxidation of the substrate, but the former is 7-fold more active than the latter. The optimum pH for activity is around 9; the enzyme is stable in the pH range 6–9 and retains its whole activity up to 40°C. The enzyme activity is strongly dependent on the presence of mercaptoethanol, other thiol compounds being much less effective. Kinetic data support the formation of a ternary complex between enzyme, substrate and coenzyme. The K m for SSA and for NAD are 7.4x10-6 M and 2x10-4 M, respectively. The molecular weight of the enzyme protein was estimated by gel-filtration to be about 130,000.Abbreviations GABA -aminobutyric acid - GABA-T -aminobutyric acid transaminase - ME mercaptoethanol - SSA succinic semialdehyde - SSA-DH succinic semialdehyde dehydrogenase  相似文献   

10.
The metabolic changes in a patient with succinic semialdehyde dehydrogenase deficiency were investigated following valproate administration using urease pretreatment and gas chromatography-mass spectrometry. A stable isotope dilution technique was used for quantification of urinary 4-hydroxybutyrate. Urinary levels of 4-hydroxybutyrate were 4-fold higher after 1-month valproate therapy. 4,5-Dihydrohexanoate, 2-deoxytetronate and 3-deoxytetronate were also 1.7-2.7-fold higher. The urinary excretions of 4-hydroxybutyrate in valproate non-medicated controls were age dependence and decreased with age. Relationships between 4-hydroxybutyrate excretion and 4-hydroxyvalproate or 5-hydroxyvalproate excretion were observed in valproate medicated controls. It seems that 4-hydroxyvalproate and 5-hydroxyvalproate as well as valproate are involved with increased excretion of 4-hydroxybutyrate following valproate administrations.  相似文献   

11.
Immobilization of plasminogen via its lysine-binding sites is regarded as a prerequisite for its activation and function in fibrinolysis and pericellular proteolysis. In the present study, the interaction of plasminogen with fimbriae found on Escherichia coli strains causing invasive human infections was studied. Plasminogen displayed concentration-dependent and saturable binding to immobilized type 1 fimbriae and, several fold lower binding to P and S fimbriae. The binding to fimbriae was effectively inhibited by -aminocaproic acid indicating that it was mediated by the lysine-binding sites of plasminogen. Binding studies with mutated fimbriae and inhibition tests indicated that the interaction was not dependent on the lectin subunit of the fimbriae. These results indicate the existence of a novel type of host-microbe interaction which may be important in the invasion by bacteria of host tissues.  相似文献   

12.
In order to study the intracellular polyamine distribution in Escherichia coli, 13C-NMR spectra of [1,4-13C]putrescine were obtained after addition of the latter to intact bacteria. The 13C-enriched methylene signal underwent line broadening. When the cells were centrifuged after 90 min the cell-bound putrescine peak had a linewidth of 23 Hz, while the supernatant liquid showed an unbound putrescine signal with a linewidth smaller than 1 Hz. By using 13C-enriched internal standards it could be shown that the linewidening was not due to the heterogeneity of the medium or to an in vivo paramagnetic effect. Cell-bound putrescine was liberated by addition of trichloroacetic acid and was therefore non-covalently linked to macromolecular cell structures. Cell-bound [13C]putrescine could be displaced by addition of an excess of [12C]putrescine. When samples of membranes, soluble protein, DNA, tRNA and ribosomes from E. coli were incubated with [1,4-13C]putrescine, strong binding was detected only in the ribosomal and membrane fractions. The ribosome-putrescine complex showed properties similar to those determined with the intact cells. By measuring the nuclear Overhauser enhancements η, it was possible to estimate that only about 50% of the polyamine was linked to the macromolecules. Determination of the T1 values of free and ribosomal-bound putrescine allowed the calculation of a correlation time, τc = 4·10?7 s for the latter. T1 and τc value for the ribosome-putrescine complex were those expected for a motional regime of slowly tumbling molecules.  相似文献   

13.
We describe the rapid and sensitive detection of 4-hydroxybutyric acid, which is a marker compound for succinic semialdehyde dehydrogenase (SSADH) deficiency. Urinary 4-hydroxybutyric acid and 3,4-dihydroxybutyric acid were targeted, quantified by gas chromatography-mass spectrometry after simplified urease digestion in which lactone formation from gamma-hydroxy acids is minimized. The recovery of 4-hydroxybutyric acid using this method was over 93%. 2,2-Dimethylsuccinic acid was used as an internal standard. The detection limit of this method was 1 nmol ml(-1) for both 4-hydroxybutyric acid and 3,4-dihydroxybutyric acid. The urinary concentrations of 4-hydroxybutyric acid and of 3,4-dihydroxybutyric acid from the patient with an SSADH deficiency were 880-3628 mmol mol(-1) creatinine (control; 3.3+/-3.3 mmol mol(-1) creatinine) and 810-1366 mmol mol(-1) creatinine (control; 67.4+/-56.2 mmol mol(-1) creatinine), respectively. The simplified urease digestion of urine is very useful for quantifying 4-hydroxybutyric acid and its related compounds in patients with 4-hydroxybutyric aciduria.  相似文献   

14.
15.
The cell envelope of Escherichia coli was examined for changes during late stages of bacteriophage T4 infection. Late events in T4 infection are shown to result in (i) a reduction in the effectiveness of membrane separation procedures employing either isopycnic sucrose gradient centrifugation or selective solubilization of inner membrane by detergent (Sarkosyl or Triton X-100), (ii) the appearance of a 54 000 dalton host protein in membrane preparations, (iii) the adventitious presence of detergent-resistant phage morphogenetic structures in membrane preparations, and (iv) a decrease in the activity of NADH oxidase and an apparent alteration in its association with inner membrane. These modifications occur regardless of the state of the e and t genes of T4.  相似文献   

16.
【背景】蓝藻中生成琥珀酸的三羧酸循环途径与其他物种不同。由于α-酮戊二酸脱羧酶和琥珀酸半醛脱氢酶的存在使得蓝藻的三羧酸循环途径变得完整。琥珀酸半醛脱氢酶催化琥珀酸半醛氧化为琥珀酸,在蓝藻中广泛存在。【目的】克隆、表达和纯化蓝杆藻ATCC51142中cce4228基因编码蛋白,并对其进行生化表征。【方法】以蓝杆藻ATCC51142基因组为模板克隆得到cce4228基因,将其插入到原核表达载体pET-28a上,在大肠杆菌BL21(DE3)细胞中进行异源表达,利用Ni-NTA树脂纯化cce4228蛋白。运用紫外分光光度法和生物信息学方法表征重组cce4228蛋白生化特性。【结果】构建了pET-28a-cce4228重组表达质粒,重组cce4228蛋白在大肠杆菌中得到可溶性表达,获得了纯度大于90%的cce4228蛋白。酶动力学测试和生物信息学分析结果显示,cce4228蛋白是一个NADP+-依赖型的琥珀酸半醛脱氢酶。【结论】蓝杆藻ATCC51142中cce4228基因编码一个偏好NADP+辅因子的琥珀酸半醛脱氢酶,cce4228蛋白的生化表征结果为进一步深入研究cce4228蛋白的结构功能关系及催化机制奠定了基础。  相似文献   

17.
Among various routes for the biological hydrogen production, the NAD(P)H-dependent pentose phosphate (PP) pathway is the most efficient for the dark fermentation. Few studies, however, have focused on the glucose-6-phosphate 1-dehydrogenase, encoded by zwf, as a key enzyme activating the PP pathway. Although the gluconeogenic activity is essential for activating the PP pathway, it is difficult to enhance the NADPH production by regulating only this activity because the gluconeogenesis is robust and highly sensitive to concentrations of glucose and AMP inside the cell. In this study, the FBPase II (encoded by glpX), a regulation-insensitive enzyme in the gluconeogenic pathway, was activated. Physiological studies of several recombinant, ferredoxin-dependent hydrogenase system-containing Escherichia coli BL21(DE3) strains showed that overexpression of glpX alone could increase the hydrogen yield by 1.48-fold compared to a strain with the ferredoxin-dependent hydrogenase system only; the co-overexpression of glpX with zwf increased the hydrogen yield further to 2.32-fold. These results indicate that activation of the PP pathway by glpX overexpression-enhanced gluconeogenic flux is crucial for the increase of NAD(P)H-dependent hydrogen production in E. coli BL21(DE3).  相似文献   

18.
Succinic semialdehyde dehydrogenases (SSADHs) are ubiquitous enzymes that catalyze the NAD(P)+-coupled oxidation of succinic semialdehyde (SSA) to succinate, the last step of the γ-aminobutyrate shunt. Mycobacterium tuberculosis encodes two paralogous SSADHs (gabD1 and gabD2). Here, we describe the first mechanistic characterization of GabD1, using steady-state kinetics, pH-rate profiles, 1H NMR, and kinetic isotope effects. Our results confirmed SSA and NADP+ as substrates and demonstrated that a divalent metal, such as Mg2+, linearizes the time course. pH-rate studies failed to identify any ionizable groups with pKa between 5.5 and 10 involved in substrate binding or rate-limiting chemistry. Primary deuterium, solvent and multiple kinetic isotope effects revealed that nucleophilic addition to SSA is very fast, followed by a modestly rate-limiting hydride transfer and fast thioester hydrolysis. Proton inventory studies revealed that a single proton is associated with the solvent-sensitive rate-limiting step. Together, these results suggest that product dissociation and/or conformational changes linked to it are rate-limiting. Using structural information for the human homolog enzyme and 1H NMR, we further established that nucleophilic attack takes place at the Si face of SSA, generating a thiohemiacetal with S stereochemistry. Deuteride transfer to the Pro-R position in NADP+ generates the thioester intermediate and [4A-2H, 4B-1H] NADPH. A chemical mechanism based on these data and the structural information available is proposed.  相似文献   

19.
以蔗糖为底物利用重组大肠杆菌合成甘露醇   总被引:1,自引:0,他引:1  
【目的】异型发酵乳酸菌可利用胞内产生的甘露醇脱氢酶将果糖高效转化为甘露醇,但果糖作为底物相对昂贵,不利于工业化生产。为了降低生产成本,必须选择廉价的底物。蔗糖相对便宜,并且大量存在于自然界中,能够被重组大肠杆菌利用产生甘露醇。蔗糖水解酶(Sucrose hydrolase)和甘露醇脱氢酶(Mannitol dehydrogenase)是发酵生产甘露醇中催化蔗糖转化成甘露醇的关键酶,构建蔗糖水解酶和甘露醇脱氢酶共表达菌株并进行相关研究是本文的主旨。【方法】利用PCR方法分别从植物乳杆菌(Lactobacillus plantarum)和布氏乳杆菌(Lactobacillus buchneri)基因组DNA中获得sac A和mdh基因,得到大小分别为1 502 bp和1 032 bp的目的基因,经序列分析后将其连接到表达载体p ET-28a(+)上,得到重组表达载体p ET28a-sac A-mdh。将重组质粒转化到大肠杆菌BL21(DE3)中,并用SDS-PAGE分析目的蛋白的表达情况并测定其酶活。【结果】SDS-PAGE显示表达蛋白的大小亚基分子量分别为55.1 k D和37.8 k D,与预期分子量一致,实现sac A和mdh基因的表达。蔗糖水解酶和甘露醇脱氢酶酶活分别为25.78 U/m L和14.56 U/m L。对重组菌株BL21(DE3)/p ET28a-sac A-mdh进行发酵条件优化,甘露醇质量浓度达到45.19 g/L,总糖转化率为37.66%。【结论】与乳酸菌利用蔗糖发酵生产甘露醇相比,产量提高了6倍,且具有发酵周期短、稳定性高等优点,菌株的成功构建为甘露醇工业化生产奠定了基础。  相似文献   

20.
Genome-scale metabolic model (GEM) of Escherichia coli has been published with applications in predicting metabolic engineering capabilities on different carbon sources and directing biological discovery. The use of glycerol as an alternative carbon source is economically viable in biorefinery. The use of GEM for predicting metabolic gene deletion of lactate dehydrogenase (ldhA) for increasing succinate production in Escherichia coli from glycerol carbon source remained largely unexplored. Here, I hypothesized that metabolic gene knockout of ldhA in E. coli from glycerol could increase succinate production. A proof-of-principle strain was constructed and designated as E. coli BMS5 (ΔldhA), by predicting increased succinate production in E. coli GEM and confirmed the predicted outcomes using wet cell experiments. The mutant GEM (ΔldhA) predicted 11% increase in succinate production from glycerol compared to its wild-type model (iAF1260), and the E. coli BMS5 (ΔldhA) showed 1.05 g/l and its corresponding wild-type produced .05 g/l (23-fold increase). The proof-of-principle strain constructed in this study confirmed the aforementioned hypothesis and further elucidated the fact that E. coli GEM can prospectively and effectively predict metabolic engineering interventions using glycerol as substrate and could serve as platform for new strain design strategies and biological discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号