首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

To support the data requirements of stakeholders, the Nickel Institute (NI) conducted a global life cycle impact assessment (LCIA) to show, with indicators, the potential environmental impacts of the production of nickel and ferronickel from mine to refinery gate. A metal industry wide agreed approach on by-products and allocation was applied.

Methods

Nine companies, comprising 19 operations, contributed data, representing 52 % of global nickel metal production and 40 % of global ferronickel production. All relevant pyro- and hydrometallurgical production routes were considered, across most major nickel-producing regions. Data from Russia, the biggest nickel-producing nation, was included; the Chinese industry did not participate. 2011 was chosen as reference year for data collection. The LCIA applied allocation of impacts of by-products using both economic and mass allocations. A sensitivity analysis was conducted to further understand the relevance and impact of the different allocation approaches.

Results and discussion

The primary extraction and refining steps are the main contributors to primary energy demand (PED) and global warming potential (GWP), contributing 60 and 70 % to the PED for the production of 1 kg class I nickel and 1 kg nickel in ferronickel, respectively, and over 55 % of the GWP for both nickel products. The PED for 1 kg class 1 nickel was calculated to be 147 MJ, whilst the PED for 1 kg nickel in ferronickel was calculated to be three times higher at 485 MJ. The main factors influencing energy demand in the metallurgical processes are ore grade and ore mineralogy. Sulphidic ore is less energy intensive to process than oxidic ore. Eighty-six percent of the production volume from class 1 nickel producers, in this study, is from sulphidic ore. All ferronickel was produced from oxidic ore. The LCIA results, including a sensitivity analysis of the impact of producers with higher and lower PED, reflect the influence of the production route on energy demand and on environmental impact categories.

Conclusions

Conformant to relevant ISO standards, and backed-up with a technical and critical review, this LCIA quantifies the environmental impacts associated with the production of the main nickel products. With this study, a sound background dataset for downstream users of nickel has been provided. The Nickel Institute aims to update their data in the coming years to reflect upon changes in technology, energy efficiency, and raw material input.
  相似文献   

2.

Introduction

Citrate is an old metabolite which is best known for the role in the Krebs cycle. Citrate is widely used in many branches of medicine. In ophthalmology citrate is considered as a therapeutic agent and an useful diagnostic tool—biomarker.

Objectives

To summarize the published literature on citrate usage in the leading causes of blindness and highlight the new possibilities for this old metabolite.

Methods

We conducted a systematic search of the scientific literature about citrate usage in ophthalmology up to January 2018. The reference lists of identified articles were searched for providing in-depth information.

Results

This systematic review included 30 articles. The role of citrate in the leading causes of blindness is presented.

Conclusions

Citrate might help inhibit cataract progression, in case of questions confirm glaucoma diagnosis or improve cornea repair treatment as adjuvant agent (therapy of ulcerating cornea after alkali injury, crosslinking procedure). However, the knowledge about possible citrate usage in ophthalmology is not widely known. Promoting recent scientific knowledge about citrate usage in ophthalmology may not only benefit of medical improvement but may also limit economic costs caused by leading causes of blindness. Further studies on citrate usage in ophthalmology should continuously be the field of scientific interest.
  相似文献   

3.

Purpose

The past two decades have seen growing pressure on vehicle manufacturers to reduce the environmental impact of their vehicles. One effective way to improve fuel efficiency and lower tailpipe emissions is to use advanced high-strength steels (AHSS) that offer equal strength and crash resistance at lower mass. The present study assesses the life cycle environmental impacts of two steel grades considered for the B-pillar in the Ford Fusion: A press-hardened boron steel design as used in the previous model of the vehicle and a hydroformed component made from a mix of the molybdenum-bearing dual phase steels DP800 and DP1000.

Methods

Information related to the component masses and grades was provided by Ford. Process models for the steelmaking process, finishing, forming, vehicle use and end of life were created in the GaBi LCA software tool. Sensitivity analyses were conducted on the impact of the hydroforming process for the new component, for which only proxy data were available and on the mix of DP800 and DP1000 in the B-pillar. Results have been presented for the environmental impact categories deemed most relevant to vehicle use.

Results and discussion

The life cycle assessment showed that the new DP800/DP1000 B-pillar design has a lower impact for the environmental impact categories assessed. Overall, the global warming potential (GWP) of the new DP800/DP1000 design was 29 % lower than the boron steel design over the full life cycle of the vehicle. The use phase was found to be the major source of environmental impacts, accounting for 93 % of the life cycle GWP impact. The 4 kg weight saving accounts for the majority of the difference in impacts between the two B-pillar designs. Impacts from manufacturing were also lower for the new design for all of the impact categories assessed despite the higher alloy content of the steel. A sensitivity analysis of the hydroforming process showed that even if impacts from forming were 100 % greater than for press hardening, the GWP from production of the new B-pillar design would still be lower than the boron steel version.

Conclusions and recommendations

The molybdenum-bearing DP1000/DP800 B-pillar was found to have lower life cycle and production impacts than the previous boron steel design. The assessment indicates that significant improvements in the environmental impacts associated with the body structure of vehicles could be made through the increased use of AHSS in vehicles without compromising crash performance.
  相似文献   

4.

Purpose

China is the world’s largest producer and consumer of refined and reclaimed copper because of the rapid economic and industrial development of this country. However, only a few studies have analyzed the environmental impact of China’s copper industry. The current study analyzes the life cycle environmental impact of copper production in China.

Methods

A life cycle impact assessment using the ReCiPe method was conducted to estimate the environmental impact of refined and reclaimed copper production in China. Uncertainty analysis was also performed based on the Monte-Carlo simulation.

Results and discussion

The environmental impact of refined copper was higher than that of reclaimed copper in almost all categories except for human toxicity because of the direct atmospheric arsenic emission during the copper recycling stage. The overall environmental impact for the refined copper production was mainly attributed to metal depletion, freshwater ecotoxicity, marine ecotoxicity, and water depletion potential impact. By contrast, that for the reclaimed copper production was mainly caused by human toxicity impact.

Conclusions

Results show that the reclaimed copper scenario had approximately 59 to 99% more environmental benefits than those of the refined copper scenario in most key categories except for human toxicity, in which a similar environmental burden was observed between both scenarios. The key factors that reduce the overall environmental impact for China’s copper industry include decreasing direct heavy metal emissions in air and water, increasing the national recycling rate of copper, improving electricity consumption efficiency, replacing coal with clean energy sources for electricity production, and optimizing the efficiency of copper ore mining and consumption.
  相似文献   

5.

Purpose

The built environment consists of a huge amount of infrastructure, such as roads and utilities. The objective of this paper is to assess the life cycle financial and environmental impact of road infrastructure in residential neighbourhoods and to analyse the relative contribution of road infrastructure in the total impact of neighbourhoods.

Methods

Various road sections are analysed based on an integrated life cycle approach, combining life cycle costing and life cycle assessment. To deal with complexity, a hierarchic assessment structure, using the principles of the “element method for cost control”, is implemented. Four neighbourhood models with diverse built densities are compared to gain insight in the relative impact of road infrastructure in neighbourhoods.

Results and discussion

The results reveal important financial and environmental impact differences between the road sections analysed. Main contributors to the life cycle financial and environmental impact are the surface layer and electrical and piped services. The contribution of road infrastructure to the total neighbourhood impact, ranging from 2 to 9 % of the total cost, is relatively limited, compared to buildings, but not negligible in low built density neighbourhoods.

Conclusions

Good spatial planning of the neighbourhood is recommended to reduce the amount of road infrastructure and the related financial and environmental impact. The priority should be to design denser neighbourhood layouts, before decreasing the financial and environmental impact of the road sections.
  相似文献   

6.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

7.

Background

Microbial communities are influenced by environmental factors including host genetics. We investigated the relationship between host bitter taste receptor genotype hTAS2R38 and oral microbiota, together with the influence of geographical location.

Methods

hTAS2R38 polymorphisms and 16S bacterial gene sequencing from oral samples were analyzed from a total of 45 healthy volunteers from different geographical locations.

Results

Genetic variation in the bitter taste receptor TAS2R38 reflected in the microbial composition of oral mucosa in Finnish and Spanish subjects. Multivariate analysis showed significant differences in the microbial composition between country and also dependent on taste genotype. Oral microbiota was shown to be more stable to the geographical location impact among AVI-homozygotes than PAV-homozygotes or heterozygotes (PAV/AVI).

Conclusion

Geographical location and genetic variation in the hTAS2R38 taste receptor impact oral mucosa microbial composition. These findings provide an advance in the knowledge regarding the interactions between taste receptor genes and oral microbiota. This study suggests the role of host-microbiota interactions on the food taste perception in food choices, nutrition, and eating behavior.
  相似文献   

8.
9.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

10.

Purpose

Cheese is one of the world’s most widely consumed dairy products and its popularity is ever growing. However, as concerns for the environmental impact of industries increase, products like cheese, which have a significant environmental impact, may lose their popularity. A commonly used technique to assess the environmental impact of a product is life cycle assessment (LCA). In this paper, a state-of-the-art review of LCA studies on the environmental impact of cheese production is presented.

Methods

Sixteen LCA studies, which explored the impact from the production of a variety of cheese types (fresh, mature and semi-hard) were examined and discussed. The four stages of the LCA were examined and the range of results of selected environmental impact categories (global warming potential, acidification potential and eutrophication potential) were detailed and discussed.

Results and discussion

For each of these environmental impact categories, raw milk production was consistently found to be the most significant contributor to the total impact, which was followed by processing. It was found that allocation between cheese and its by-products was crucial in determining the impact of cheese production and standardisation or guidelines may be needed. Very little information relating to wastewater treatment system and processes were reported and this leads to inaccurate environmental impact modelling relating to these aspects of the manufacture of cheese. Very few studies included the design of packaging in terms of reducing food waste, which may significantly contribute to the overall environmental impact.

Conclusions

As raw milk production was found to have the greatest contribution to environmental impact, mitigation strategies at farm-level, particularly in relation to enteric fermentation and manure management, need to be implemented. Additionally, based on the literature, there is a suggestion that fresh cheese has less of an environmental impact than semi-hard cheeses, particularly when examining direct energy consumption. However, there needs to be more case studies investigated to justify this statement.
  相似文献   

11.

Purpose

Hydrothermal liquefaction of lignin has been demonstrated as a successful process for the synthesis of value-added phenolic chemical compounds such as vanillin. Vanillin has commercial value as a flavor and fragrance ingredient. This study performs a comparative process simulation and life cycle assessment (LCA) of synthesis of vanillin from depolymerization of lignin, one of the most abundant natural polymers on Earth.

Methods

Laboratory-scale scenarios for alkali lignin treatment were analyzed using LCA (TRACI 2.1) and green design metrics (process and energy efficiency, waste prevention, renewability, and hazard/pollution avoidance); scenarios included temperature, residence time, lignin loading, gas presence, and catalyst variants.

Results and discussion

Results show that models which adhere better to green design metrics also result in environmental impact reductions, demonstrating a positive correlation between both sustainability metrics. Vanillin yield increased ~ 7% when reaction time increased from 10 to 20 min; however, the energy used for maintaining operational conditions during process increased between 10 and 50%. Catalyst selection was found to be a deterministic factor affecting results. A catalytic system comprised of a heterogeneous catalyst (nickel oxide) and acidic homogeneous catalyst (supercritical carbon dioxide) was identified as the best option; the catalyst reduced carcinogenic and ecotoxicity impacts by ~ 80 and 90%, respectively when compared to molybdenum oxide. Use of energy and dichloromethane were found to be significant overall environmental impact contributors.

Conclusions

Laboratory results can be used and evaluated via LCA to identify sustainable pathways for commercial chemical processing development.
  相似文献   

12.

Introduction

Ultrasound examination coupled with fine-needle aspiration (FNA) cytology is the gold standard for the diagnosis of thyroid cancer. However, about 10–40% of these analyses cannot be conclusive on the malignancy of the lesions and lead to surgery. The cytological indeterminate FNA biopsies are mainly constituted of follicular—patterned lesions, which are benign in 80% of the cases.

Objectives

The development of a FNAB classification approach based on the metabolic phenotype of the lesions, complementary to cytology and other molecular tests in order to limit the number of patients undergoing unnecessary thyroidectomy.

Methods

We explored the potential of a NMR-based metabolomics approach to improve the quality of the diagnosis from FNABs, using thyroid tissues collected post-surgically.

Results

The NMR-detected metabolites were used to produce a robust OPLSDA model to discriminate between benign and malignant tumours. Malignancy was correlated with amino acids such as tyrosine, serine, alanine, leucine and phenylalanine and anti-correlated with myo-inositol, scyllo-inositol and citrate. Diagnosis accuracy was of 84.8% when only indeterminate lesions were considered.

Conclusion

These results on model FNAB indicate that there is a clear interest in exploring the possibility to export NMR metabolomics to pre-surgical diagnostics.
  相似文献   

13.

Purpose

In an effort to reduce the environmental impacts of the furniture sector, this study aimed to diagnose the environmental performance of an office cabinet throughout its life cycle.

Methods

An attributional life cycle assessment (LCA) was used, based on the ISO 14044 Standard and ILCD Handbook. The scope of the study considered the entire supply chain, from cradle to grave, including the steps of pre-manufacturing, manufacturing, use, and post-use of the product. The impact assessment method was the International Reference Life Cycle Data System (ILCD) 2011 midpoint.

Results and discussion

The results identified that the most significant environmental impact of the furniture life cycle was due to the distances covered and production of the main raw material, wood medium-density particleboard (MDP). The evaluation of transport scenarios showed environmental tradeoffs for truck fuel switches and environmental gains for the distribution of MDP from closer suppliers by truck, as well as from current supplier by truck and ship in the major categories. Furthermore, evaluation of the office cabinet post-use options showed that reuse, recycling, or energy recovery from waste cause significant environmental gains in the major categories. Wooden furniture is a potential carbon sink if its life cycle does not emit more greenhouse gases than its materials can store. The impacts of substitution scenarios varied depending on the type of product avoided.

Conclusions

The LCA proved a powerful method to diagnose and manage environmental impacts in complex product systems. The sensitivity analysis showed that it is possible to reduce the environmental impacts and, at the same time, make the furniture industry increase its economic gains and net carbon stock in the anthroposphere.
  相似文献   

14.

Purpose

Bivalve production is an important aquaculture activity worldwide, but few environmental assessments have focused on it. In particular, bivalves’ ability to extract nutrients from the environment by intensely filtering water and producing a shell must be considered in the environmental assessment.

Methods

LCA of blue mussel bouchot culture (grown out on wood pilings) in Mont Saint-Michel Bay (France) was performed to identify its impact hotspots. The chemical composition of mussel flesh and shell was analyzed to accurately identify potential positive effects on eutrophication and climate change. The fate of mussel shells after consumption was also considered.

Results and discussion

Its potential as a carbon-sink is influenced by assumptions made about the carbon sequestration in wooden bouchots and in the mussel shell. The fate of the shells which depends on management of discarded mussels and household waste plays also an important role. Its carbon-sink potential barely compensates the climate change impact induced by the use of fuel used for on-site transportation. The export of N and P in mussel flesh slightly decreases potential eutrophication. Environmental impacts of blue mussel culture are determined by the location of production and mussel yields, which are influenced by marine currents and the distance to on-shore technical base.

Conclusions

Bouchot mussel culture has low environmental impacts compared to livestock systems, but the overall environmental performances depend on farming practices and the amount of fuel used. Changes to the surrounding ecosystem induced by high mussel density must be considered in future LCA studies.
  相似文献   

15.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

16.

Introduction

Metabolomic profiling combines Nuclear Magnetic Resonance spectroscopy with supervised statistical analysis that might allow to better understanding the mechanisms of a disease.

Objectives

In this study, the urinary metabolic profiling of individuals with porphyrias was performed to predict different types of disease, and to propose new pathophysiological hypotheses.

Methods

Urine 1H-NMR spectra of 73 patients with asymptomatic acute intermittent porphyria (aAIP) and familial or sporadic porphyria cutanea tarda (f/sPCT) were compared using a supervised rule-mining algorithm. NMR spectrum buckets bins, corresponding to rules, were extracted and a logistic regression was trained.

Results

Our rule-mining algorithm generated results were consistent with those obtained using partial least square discriminant analysis (PLS-DA) and the predictive performance of the model was significant. Buckets that were identified by the algorithm corresponded to metabolites involved in glycolysis and energy-conversion pathways, notably acetate, citrate, and pyruvate, which were found in higher concentrations in the urines of aAIP compared with PCT patients. Metabolic profiling did not discriminate sPCT from fPCT patients.

Conclusion

These results suggest that metabolic reprogramming occurs in aAIP individuals, even in the absence of overt symptoms, and supports the relationship that occur between heme synthesis and mitochondrial energetic metabolism.
  相似文献   

17.

Purpose

In the light of anthropogenic resource depletion and the resulting influences on the greenhouse effect as well as globally occurring famine, food waste has garnered increased public interest in recent years. The aim of this study is to analyze the environmental impacts of food waste and to determine to what extent consumers’ behavior influences the environmental burden of food consumption in households.

Methods

A life cycle assessment (LCA) study of three food products is conducted, following the ISO 14040/44 life cycle assessment guidelines. This study addresses the impact categories climate change (GWP100), eutrophication (EP), and acidification (AP). Primary energy demand (PED) is also calculated. For adequate representation of consumer behavior, scenarios based on various consumer types are generated in the customer stage. The customer stage includes the food-related activities: shopping, storage, preparation, and disposal of food products as well as the disposal of the sales packaging.

Results and discussion

If the consumer acts careless towards the environment, the customer stage appears as the main hotspot in the LCA of food products. The environmental impact of food products can be reduced in the customer stage by an environmentally conscious consumer. Shopping has the highest effect on the evaluated impact categories and the PED. Additionally, consumers can reduce the resulting emissions by decreasing the electric energy demand, particularly concerning food storage or preparation. Moreover, results show that the avoidance of wasting unconsumed food can reduce the environmental impact significantly.

Conclusions

Results of this study show that the influence of consumer behavior on the LCA results is important. The customer stage of food products should not be overlooked in LCA studies. To enable comparison among results of other LCA studies, the LCA community needs to develop a common methodology for modeling consumer behavior.
  相似文献   

18.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

19.

Aim

To investigate the effects of biochar on biological and chemical phosphorus (P) processes and identify potential interactive effects between P fertilizer and biochar on P bioavailability in the rhizosphere of maize.

Methods

We conducted a pot-experiment with maize in a sandy loam soil with two fertilizer levels (0 and 100 mg P kg ?1) and three biochars produced from soft wood (SW), rice husk (RH) and oil seed rape (OSR). Sequential P fractionation was performed on biochar, bulk soil, and rhizosphere soil samples. Acid and alkaline phosphatase activity and root exudates of citrate, glucose, fructose, and sucrose in the rhizosphere were determined.

Results

RH and OSR increased readily available soil P, whereas SW had no effect. However, over time available P from the biochars moved to less available P pools (Al-P and Fe-P). There were no interactive effects between P fertilizer and biochar on P bioavailability. Exudates of glucose and fructose were strongly affected by especially RH, whereas sucrose was mostly affected by P fertilizer. Alkaline phosphatase activity was positively correlated with pH, and citrate was positively correlated with readily available P.

Conclusion

Biochar effects on biological and chemical P processes in the rhizosphere are driven by biochar properties.
  相似文献   

20.

Introduction

Cornea is the outermost part of the eye supplied mostly by aqueous humor (AH). Therefore, the comparison of the metabolomic compositions of AH and cornea may help to determine which compounds are produced inside the cornea, and which penetrate into cornea from AH for intra-corneal consumption. Keratoconus (KC) is the most common form of the cornea dystrophy, and the analysis of KC corneas can unravel the metabolomic changes occurring in AH and cornea of KC patients.

Objectives

The work is aimed at the determination of concentrations of a wide range of metabolites in the human cornea and AH, the comparison of the metabolomic profiles of cornea and AH, and the comparison of the metabolomic compositions of samples taken from KC patients and normal donors (post-mortem).

Methods

The quantitative metabolomic profiling was carried out with the use of two independent methods—high-frequency 1H NMR spectroscopy and HPLC with high-resolution ESI-MS detection.

Results

The concentrations of 71 most abundant metabolites in cornea and AH from keratoconus patients and from human cadavers have been measured. It is found that the concentrations of purines and organic acids in cornea are significantly higher than in AH. The KC corneas are characterized by the enhanced levels of acetate and citrate, and also by low values of GSH/GSSG ratios.

Conclusion

A significant difference in the metabolomic compositions of the human AH and cornea has been revealed. The concentrations of glucose and some amino acids in cornea are significantly lower than in AH, indicating their fast consumption inside the cornea. The high levels of organic acids, purines and GSH in cornea should be attributed to their production in the cornea. The enhanced levels of acetate and citrate as well as the low values of GSH/GSSG ratios in KC corneas are the indicators of the oxidative stress.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号